(以下文章来源于湘江数评,作者老杨)
数字化转型建设每个企业都在做,但最终的结果却是天壤之别,有的企业利用数字化系统提高了工作效率,降低了管理成本,而有的企业却在系统上线以后明显感觉还不如传统纸质管理模式效率高,吐槽声不绝于耳,为什么会有如此问题?老杨认为,除了老生常谈的认知问题,最重要的还是管理体系的问题,当前大部分传统企业数字化建设失败率高的几个关键环节主要体现在:
第一,实施环节:
为什么部分的传统企业数字化建设在实施阶段烂尾,其原因有如下几点:
1.前期的需求初心:
与其说是需求不如说是需要,因为当前部分企业做系统引进仅仅是因为业务部门有需要,然后就头脑发热去引进一套系统,从来不考虑部门之间的协同性问题,管理的孤岛造就了需求的孤立性、功能应的拓展性,所以信息部门需要注意的是业务部门有数字化的功能需要并不等于需求,要学会判断其必要性、可行性、价值性及可落地性,不能因业务部门的头脑发热一时冲动而感到热血澎湃,信息部门需要的是冷静的分析与判断。
2.中期的需求转化:
业务部门的需求从提出到实现最关键的一个过程就是转化,为什么数字化需求需要转化?在当前大部分的传统企业中领导及业务部门对数字化的认知是有限的,对需求的表达能力也是有限的,很多时候业务部门可能心理十分的清楚自己想要什么,但难以用语言表达出来,这就需要信息部门来引导、并根据企业当前的管理模式来修正;但问题是部分企业或者大部分的中小企业没有信息部门,就缺乏了这样一个沟通与修正的环节,直接与软件公司接洽,这个时候部分软件企业为了拿到订单,承诺任何需求均可实现,甚至还加入一些超预期的方案,美其名曰与标杆看齐,引进所谓“灯塔”企业的管理模式,其实这些需求的转化是不切实际的,自然在后期的实施中难以实现;
3.后期的需求实现:
为什么部分企业数字化建设在需求阶段就烂尾了,这个环节就体现在这个需求实现,问题主要体现在:实施能力!主要包括两个方面,第一是企业信息部门的实施管控能力,部分企业的信息部门喜欢做甩手掌柜,在实施过程中不管不问,导致实施失控;第二是软件公司的实施团队能力与经验不足,在业务部门需求不明、需求不定、或者消极配合的情况下难以做引导与修正,一般情况下是等、靠、要,缺乏实施工作的创新性与主动性,从而被业务部门牵着鼻子走,有限的实施人天被无限拉长,最后迫于成本压力主动放弃项目;所以最后软件公司不仅失去的是数字化建设成本,还失去了对数字化转型的信心。
从以上不难看出系统实施的重要性,但问题是大部分的企业缺乏的就是这种对于实施的专业管控能力,从需求收集到实现的过程转化能力,所以企业应在需求上重视、过程实现上科学管理,这是企业数字化系统落地的基础保障。
第二,应用环节:
数字化系统应用难,是当前大部分企业数字化转型建设的最大拦路虎,为什么会存在这样的问题?其中既有技术问题,也有管理上的不足,更多的是大部分传统企业没有数字化运营的意识,主要表现在如下:
1.系统上线后业务部门吐槽多:
究其原因除了前期需求的问题,也有可能与软件公司的实施质量有关,让系统的相关功能难以与业务部门的需求匹配,更多的是部分员工不愿改变固有的工作模式,难以接受新事物,也可能是数字化管理让一些灰度不在,让一些人失去了既得利益,所以在系统应用上槽点多;
2.系统上线后缺乏运营监管能力:
这是大部分传统企业普遍存在的问题,也就是说系统上线以后除了日常的后台运维动作外就没有然后了,导致系统用与不与一个样,数据的及时性、准确性难以保障,失去数字化管控的价值;
企业数字化转型建设的价值体现关键在于应用环节,所以企业不仅要在前期实施环节下足功夫,更重要的是在应用环节加大力度,这种力度包括推广的力度、监管的力度、对于数据的质量保障与应用力度。
第三,迭代环节:
做数字化烧钱是大部分传统企业领导共同的一个认知,这导致的结果就对数字化建设缺乏可持续性的投入,因为随着企业到达数字化应用的深水区,前期因缺乏规划性管理而造成苦果在此时全部呈现,比如各种系统孤岛的打通,数据的清洗与标准化建设,同时还有随着管理场景的不断变化引发的系统功能与技术迭代,以上这一切企业都必须要用大量的真金白银来买单,如果不投入,不改善,直接影响的就是应用效果,而在现实中往往是部分企业领导总是以成本来衡量系统,从而导致后续迭代乏力。
综上所述,虽然大部分企业深知数字化转型建设是系统化的工程,但在真正落地的环节却缺乏精细化的管理与管控手段,缺乏足够的保障措施,那么企业该如何做?老杨认为企业需要有如下“八个一”保障:
一个专业的组织保障;
一个明确的需求保障;
一套可落地的方案保障;
一个清晰的实现路径保障;
一个科学的专业的实施保障;
一套可执行的运营制度保障;
一个可持续的资金保障;
一套可持续迭代的技术保障;
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20