很多考了CDA数据分析一级的伙伴经常问的就是:如何来找一些数据分析的项目来做,练习所学习的数据分析技能,并能写出一份数据分析报告呢?想转数据运营,如果没有项目经验很难找到一份相关工作。从哪里可以学习如何做数据分析项目?如何找到项目做?如何出报告?
一、Kaggle
Kaggle发布了大量的数据分析、挖掘、机器学习预测项目,没有实习和项目经历的小伙伴可以在Kaggle上找到项目练手。
Kaggle上的项目有不同的项目分类,包括探索性分析,数据可视化,趋势预测,分类等多种类型,可以根据自己的需要选择不同过类型的项目练手。
二、阿里天池
网址:https://tianchi.aliyun.com/
Kaggle的项目都是英文的,有的小伙伴可能觉得英文看起来太费劲,阿里天池的项目全是中文的,阅读无障碍。
这里给大家整理了10个适合新人的项目:
1、Hotelbookingdemand酒店预订需求
https://www.kaggle.com/jessemostipak/hotel-booking-demand
该数据集包含城市酒店和度假酒店的预订信息,包括预订时间、停留时间,成人/儿童/婴儿人数以及可用停车位数量等信息。
适用场景:社会科学、旅行、酒店、用户行为,不具有明显的行业标识,可进行常规用户行为分析。
数据量:32列共12W数据量。
可以定义的问题:
1)基本情况:城市酒店和假日酒店预订需求和入住率比较;
2)用户行为:提前预订时长、入住时长、预订间隔、餐食预订情况;
3)一年中最佳预订酒店时间;
4)利用Logistic预测酒店预订。
2、VideoGameSales电子游戏销售分析
https://www.kaggle.com/gregorut/videogamesales
包含游戏名称、类型、发行时间、发布者以及在全球各地的销售额数据。适用场景:电商、游戏销售,常规销售数据。
数据量:11列共1.66W数据量。
可以定义的问题:
1)电子游戏市场分析:受欢迎的游戏、类型、发布平台、发行人等;
2)预测每年电子游戏销售额。
3)可视化应用:如何完整清晰地展示这个销售故事。
3、USAccidents美国交通事故分析(2016-2019)
https://www.kaggle.com/sobhanmoosavi/us-accidents
覆盖全美49州的全国性交通事故数据集,时间跨度:2016.02-2019.12,包括事故严重程度、事故开始和结束时间、事故地点、天气、温度、湿度等数据。适用场景:无明显行业标识,通用。
数据量:49列共300W数据量。
可以定义的问题:
1)发生事故最多的州,什么时候容易发生事故;
2)影响事故严重程度的因素;
3)预测事故发生的地点;
4)可视化应用:讲述4年间美国发生事故的总体情况
4、IBM员工离职因素分析
https://www.kaggle.com/datasets/pavansubhasht/ibm-hr-analytics-attrition-dataset
IBM员工离职原因数据及包括员工编号、年龄、受教育程度、离家距离、生活和工作的平衡、工作参与情况等信息。
可以定义的问题:
1)通过分析该数据集可以找出员工流失的因素
2)工作角色和流失率的相关性;
3)离家距离与流失率的相关性;
4)平均月收入和受教育程度对流失率的影响
5、探索影响寿命的因素
https://www.kaggle.com/datasets/kumarajarshi/life-expectancy-who
世界卫生组织(WHO)旗下的全球卫生观察站(GHO)数据存储库跟踪了所有国家的健康状况以及许多其他相关因素,该数据集包括了人口统计学变量,收入构成和死亡率等信息。
可以定义的问题:1)最初选择的各种预测因素是否会真正影响预期寿命?
2)哪些预测变量实际上会影响预期寿命?
3)预期寿命值低于(<65)的国家是否应该增加其医疗保健支出以改善其平均寿命?
4)婴儿和成人死亡率如何影响预期寿命?
5)预期寿命与饮食习惯,生活方式,运动,吸烟,饮酒等有正相关还是负相关?
6)学校教育对人类寿命有何影响?7)预期寿命与饮酒有正面还是负面的关系?
6、NewYorkCityAirbnbOpenData纽约市Airbnb订房数据
https://www.kaggle.com/dgomonov/new-york-city-airbnb-open-data
用途:房价预测和可视化展示
7、TheMoviesDataset电影数据集分析
https://www.kaggle.com/rounakbanik/the-movies-dataset
用途:多表关联、评分排序、收入分析、推荐引擎
8、TelcoCustomerChurn电信客户流失问题
https://www.kaggle.com/blastchar/telco-customer-churn
https://www.kaggle.com/wendykan/lending-club-loan-data
用途:金融小贷、逾期分析、逾期预测
10、BitcoinHistoricalData比特币数据分析
https://www.kaggle.com/mczielinski/bitcoin-historical-data
用途:时间戳、数据清洗、价格预测
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31