数据分析八大禁忌
大家都对这种东西嗤之以鼻对不对?作为接受过高等教育的我们怎么会信这些命理风水的东西呢,比如床不能对着电视机,开玩笑,老祖宗的年代有电视机吗?躺着看电视才享受呢。对于这种东西,陈老师一开始也是拒绝的,直到有一天半夜起床上厕所,看到电视机里自己的影子以为撞见鬼吓得尿了一裤裆,才深刻感慨祖先智慧的伟大。
所以禁忌这种东西,都是借鬼神之言,行人间之事。特别是面对那些初出茅庐的小伙子,还真的编点鬼怪故事恐吓一下他们的好奇心,才会避免他们走更多弯路,正如每个老奶奶都养了一只吓唬孙子的大灰狼一样。
在数据分析领域,也有这样的行为禁忌,站在支持业务的角度,数据分析工作可分为三类:
1.事前:预测
2.事中:监控
3.事后:评估
我们一类一类看一下,办事的时候有哪些禁忌
事前预测:三类禁忌要牢记,每一个都惹不了
1.忌参合神仙的事:比如那种受政策,规定,环境影响巨大的业务,不可预测,不能预测,也不要去预测。我们是不知道中央什么时候出文件的,也不知道什么时候土地爷爷不爽抖抖膀子,所以此类事件只能归于黑天鹅,效果很难事先预计。话说回来,如果能事先预知,有这么大本事为啥不去炒楼呢,突然好期待!(╯3╰)
2.忌参合皇帝的事:上有神仙下有皇帝,那种受自己公司或者合作方公司的政策,制度,规则影响很大的业务,也不要去预测。因为当一个业务受政策,制度,规则等高层主观能动性影响太大的时候,高层的决策就是唯一关键要素,事件发展只要看老板们决策就好了,完全无法按正常进展去预测。
3.忌参合妖怪的事:上有政策下有对策,在对下游管控力度弱的时候,下游的业务状况就很难按正常的逻辑去预测。最典型性的,就是下游经销商,KA势力强大,公司只能看别人脸色行事。这时候如果下游借公司促销机会钻空子套利,即无法管理,也无法预测事态走向。因为人心之险恶过于妖怪,人性之贪婪是很难预测的。
宜:收集原因数据
预测的本质原理是:过去发生的事情未来会重现,过去发生的原因和未来一样。因此当游戏规则完全不可知或被关键人物掌控的时候,预测就变得毫无意义。相应的,如果规则是市场自发形成的,可观测可追踪的,那么就可以进行预测,其中的关键就是尽可能多的收集原因数据。
举个简单的例子,公司销售额连续8个月上升,那么第9个月会不会上升呢?答案是:不知道。因为连续8个月上升是一个结果,结果不能证明结果,只有找到上游的原因才行。连续增长是因为新产品?渠道发力?促销带动?推广范围?找到原因自然可以根据原因的变化情况,预测未来的结果。这也是预测类分析的铁律:抓住原因找结果。
相应的,因为很多原因是不能收集,或者收集不全的,所以所有的预测都是有概率,有范围的,最好是给出乐观,悲观等几个可能。不在预测的时候立flag,是数据分析师与街头算命张大师的本质区别。
事中监控:理清逻辑再动手,不然下班没法走
忌只给孤立的一个或几个数字:业务方今天要个数字A,后天要个数字B,大后天要个数字C,每一个都得计算百分比/平均值,每一个都得看回过往6个月,每一个数字都是加急,每一个都要插队做,于是天天都在加班跑各种数。这就是典型的没有理清数据与项目间的逻辑,只是孤立的给数据的坏处。
宜:理清数据与项目间逻辑关系
举个栗子:我们有一个促销要针对持有VIP2级会员卡的顾客,在实体店消费指定产品组合2件以上的人奖励一个礼品,通过这个活动拉动整体消费,促进会员卡普及率。那么要看哪些数据呢?
1.从整体效果出发:既然目标是整体消费,就要把总消费当做最大KPI并且拆分到天,每天去追踪效果,既要统计当天达标率,又得计算累计数额,还要和去年对比,全方位让业务掌控整体进度。
2.从过程管理出发:各区域达标率如何?现有会员发动了多少?新会员吸引了多少?有多少只买了1件的漏网之鱼?有多少买了两件却不办会员卡的?这些指标及时给出来,可以帮助业务指导各片区,门店的执行工作。是否有区域出现所有的达标消费都出现在一个门店的怪事?这种明显反常指标提前指出来,可以帮助业务打击渠道作弊行为。
3.从运作出发:产品与礼品的库存都要够。因此每天要看各区域产品组合与礼品库存数,每天消耗数,还要根据每天参与人数,剩余参与人数,参与率三个指标计算预计所需的库存数。
因此报表至少要包含以上三类数十个字段,才可以承接到业务方的需求。这些具体的需求点要事先谈好才行,业务方没有提的要主动提示。要做到这样的清晰,首先业务方得有清晰的目标和考核指标,有清晰的推进方法,这样才能选出用那些字段来描述问题,要做那些推算,生产什么新变量。
如果还没有清晰到上边的程度,欢迎业务部门随时来和分析师交流。我们能帮你理清思路,梳理用哪些字段描述问题;我们也能提供一些过往的项目经验给到你们参考;我们还能指引你看那些平时不咋看的报表,帮你建立概念。总之多聊天,少下不清晰的需求单,对大家都有好处,(*^__^*)
事后评估:四大禁忌要牢记,不帮业务擦屁屁
1.忌找架打:“他的项目就是烂!帮我分析下烂在哪里吧!”“不好意思,没这服务”
2.忌找资源:“我的项目很缺钱!请分析下重要性吧!”“不好意思,没这服务”
3.忌找点赞:“我的项目很优秀!请着重强调下吧!”“不好意思,没这服务”
4.忌找理由:“我的活动没业绩!麻烦分析下闪光点吧!”“不好意思,没这服务”
科学性与严肃性是分析师工作的基本要求。我们只对提供的数据准确性负责任,不对各种项目,工作的结果负责任。我们可以提供必要的数据,但评价是好还是坏,和标杆有关,标杆怎么定,是业务部门需要思考和设计的。分析师可以提建议,但不要直接下结论。我们是为老板决策提供支持的,不是为某个业务条线提供善后服务的,失去了科学性和中立性,我们也会失去老板的信任。
数据分析咨询请扫描二维码
统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22