数据分析八大禁忌
大家都对这种东西嗤之以鼻对不对?作为接受过高等教育的我们怎么会信这些命理风水的东西呢,比如床不能对着电视机,开玩笑,老祖宗的年代有电视机吗?躺着看电视才享受呢。对于这种东西,陈老师一开始也是拒绝的,直到有一天半夜起床上厕所,看到电视机里自己的影子以为撞见鬼吓得尿了一裤裆,才深刻感慨祖先智慧的伟大。
所以禁忌这种东西,都是借鬼神之言,行人间之事。特别是面对那些初出茅庐的小伙子,还真的编点鬼怪故事恐吓一下他们的好奇心,才会避免他们走更多弯路,正如每个老奶奶都养了一只吓唬孙子的大灰狼一样。
在数据分析领域,也有这样的行为禁忌,站在支持业务的角度,数据分析工作可分为三类:
1.事前:预测
2.事中:监控
3.事后:评估
我们一类一类看一下,办事的时候有哪些禁忌
事前预测:三类禁忌要牢记,每一个都惹不了
1.忌参合神仙的事:比如那种受政策,规定,环境影响巨大的业务,不可预测,不能预测,也不要去预测。我们是不知道中央什么时候出文件的,也不知道什么时候土地爷爷不爽抖抖膀子,所以此类事件只能归于黑天鹅,效果很难事先预计。话说回来,如果能事先预知,有这么大本事为啥不去炒楼呢,突然好期待!(╯3╰)
2.忌参合皇帝的事:上有神仙下有皇帝,那种受自己公司或者合作方公司的政策,制度,规则影响很大的业务,也不要去预测。因为当一个业务受政策,制度,规则等高层主观能动性影响太大的时候,高层的决策就是唯一关键要素,事件发展只要看老板们决策就好了,完全无法按正常进展去预测。
3.忌参合妖怪的事:上有政策下有对策,在对下游管控力度弱的时候,下游的业务状况就很难按正常的逻辑去预测。最典型性的,就是下游经销商,KA势力强大,公司只能看别人脸色行事。这时候如果下游借公司促销机会钻空子套利,即无法管理,也无法预测事态走向。因为人心之险恶过于妖怪,人性之贪婪是很难预测的。
宜:收集原因数据
预测的本质原理是:过去发生的事情未来会重现,过去发生的原因和未来一样。因此当游戏规则完全不可知或被关键人物掌控的时候,预测就变得毫无意义。相应的,如果规则是市场自发形成的,可观测可追踪的,那么就可以进行预测,其中的关键就是尽可能多的收集原因数据。
举个简单的例子,公司销售额连续8个月上升,那么第9个月会不会上升呢?答案是:不知道。因为连续8个月上升是一个结果,结果不能证明结果,只有找到上游的原因才行。连续增长是因为新产品?渠道发力?促销带动?推广范围?找到原因自然可以根据原因的变化情况,预测未来的结果。这也是预测类分析的铁律:抓住原因找结果。
相应的,因为很多原因是不能收集,或者收集不全的,所以所有的预测都是有概率,有范围的,最好是给出乐观,悲观等几个可能。不在预测的时候立flag,是数据分析师与街头算命张大师的本质区别。
事中监控:理清逻辑再动手,不然下班没法走
忌只给孤立的一个或几个数字:业务方今天要个数字A,后天要个数字B,大后天要个数字C,每一个都得计算百分比/平均值,每一个都得看回过往6个月,每一个数字都是加急,每一个都要插队做,于是天天都在加班跑各种数。这就是典型的没有理清数据与项目间的逻辑,只是孤立的给数据的坏处。
宜:理清数据与项目间逻辑关系
举个栗子:我们有一个促销要针对持有VIP2级会员卡的顾客,在实体店消费指定产品组合2件以上的人奖励一个礼品,通过这个活动拉动整体消费,促进会员卡普及率。那么要看哪些数据呢?
1.从整体效果出发:既然目标是整体消费,就要把总消费当做最大KPI并且拆分到天,每天去追踪效果,既要统计当天达标率,又得计算累计数额,还要和去年对比,全方位让业务掌控整体进度。
2.从过程管理出发:各区域达标率如何?现有会员发动了多少?新会员吸引了多少?有多少只买了1件的漏网之鱼?有多少买了两件却不办会员卡的?这些指标及时给出来,可以帮助业务指导各片区,门店的执行工作。是否有区域出现所有的达标消费都出现在一个门店的怪事?这种明显反常指标提前指出来,可以帮助业务打击渠道作弊行为。
3.从运作出发:产品与礼品的库存都要够。因此每天要看各区域产品组合与礼品库存数,每天消耗数,还要根据每天参与人数,剩余参与人数,参与率三个指标计算预计所需的库存数。
因此报表至少要包含以上三类数十个字段,才可以承接到业务方的需求。这些具体的需求点要事先谈好才行,业务方没有提的要主动提示。要做到这样的清晰,首先业务方得有清晰的目标和考核指标,有清晰的推进方法,这样才能选出用那些字段来描述问题,要做那些推算,生产什么新变量。
如果还没有清晰到上边的程度,欢迎业务部门随时来和分析师交流。我们能帮你理清思路,梳理用哪些字段描述问题;我们也能提供一些过往的项目经验给到你们参考;我们还能指引你看那些平时不咋看的报表,帮你建立概念。总之多聊天,少下不清晰的需求单,对大家都有好处,(*^__^*)
事后评估:四大禁忌要牢记,不帮业务擦屁屁
1.忌找架打:“他的项目就是烂!帮我分析下烂在哪里吧!”“不好意思,没这服务”
2.忌找资源:“我的项目很缺钱!请分析下重要性吧!”“不好意思,没这服务”
3.忌找点赞:“我的项目很优秀!请着重强调下吧!”“不好意思,没这服务”
4.忌找理由:“我的活动没业绩!麻烦分析下闪光点吧!”“不好意思,没这服务”
科学性与严肃性是分析师工作的基本要求。我们只对提供的数据准确性负责任,不对各种项目,工作的结果负责任。我们可以提供必要的数据,但评价是好还是坏,和标杆有关,标杆怎么定,是业务部门需要思考和设计的。分析师可以提建议,但不要直接下结论。我们是为老板决策提供支持的,不是为某个业务条线提供善后服务的,失去了科学性和中立性,我们也会失去老板的信任。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13