大数据在现实世界中 可能是一只无形的杀手
大数据被很多人吹捧成了大企业的救星:有人说它能预言未来,照亮我们的道路,给古老的商业模式带来新的生机。但是在现实世界中,数据是会杀人的。它能杀死项目,杀死金钱,甚至杀死时间。25年前,数据的增长速度大约只有每天100GB,而现在,数据的增长速率差不多已达到50,000GB每秒。随着数据量的海量增长,企业也越来越难以凭借自身的能力进行数据分析,从而加大而不是减小了企业战略决策的难度。
时间是我们最宝贵的资源,而数据偷走了我们大量宝贵的时间。我们的感观早已被各种各样的数据淹没。每天我们都会收到数不清的电子邮件、手机短信和提醒消息,每一条信息都会让人分心,降低我们的工作效率。它们将我们抽离了原本该做的事情,迫使我们将注意力放在也许重要、也许不重要的事情上。同理,企业的业务数据也同样多得令人窒息,牵扯了我们的大量精力,已经成了影响企业高效决策的拦路虎。
不妨想象一下,如果有一天,你只会收到对你来说真正重要的信息,而且这些信息还能在正确的时间、在正确的地点找到你,世界将是什么样子。那么你每天至少能多做多少事情?我们将大量的时间耗费在被动消化这些海量信息上,真正用来主动谋划企业发展的时间少之又少。这样既令人心力交瘁,又削弱了企业效能。
更重要的是,数据会令企业丧失精准度。光靠捕捉更多信息并不会自动使企业产生更多价值。有人可能会想,我们收集的数据越多,就越能从中获得好的见解。这种自欺欺人的心态是很危险的。只有当数据能带来准确而重要的见解时,它才是好的数据。关注大数据观察网(微信公众号:shuju_net)了解更多精彩资讯
另外,只有与你息息相关的信息才是有用的信息。好的信息必须具备时效性和真实性。然而不幸的是,当企业想从大数据中提取有用的见解时,却经常会起到反效果。举个真实的例子,美国有一个叫麦克·西伊的人是办公用品超市OfficeMax的常客,他的女儿不幸和男友死于一场车祸。OfficeMax不知怎么得知了这个消息,在发给麦克·西伊的自动促销邮件中竟然出现了这样的抬头:“麦克·西伊(女儿死于车祸)。”这并非大数据有意作孽,而是它的相关性(和适宜性)的问题。一个企业要想只收集其确实需要的数据几乎是不可能的,很多时候你收集到的是那些原本不该看到的东西。对于一家公司来说,你收集到的数据很可能是误导性甚至是毁灭性的。大数据虽然能将很多不相关的点连接起来,呈现一幅完整的图画,但是要确保数据的相关性、及时性和真实性,你首先还要正确理解它的背景。
现在,全球每天的数据总量都能达到250万的三次方字节,要想通过大数据获得全面的见解是很难的。你要么会陷入无力分析的境地(因此无法获得见解),要么就更糟糕,你可能会在有限的甚至是被错误解读的数据基础上获得错误的见解。如果没有正确地理解数据的背景,将不啻于椽木求鱼。一些看似有希望改变游戏规则的见解,在实际中却很有可能导致你从游戏中出局。
数据也会扼制你的灵活性。传统的数据分析方法,是将交易系统中的所有数据存放到一个数据仓库里(也有的叫数据湖或数据池),然后运行几套业务智能系统,叫几个或十几个分析师分析上一周的时间,然后把数据导到Excel里,或者做一个PPT。周而复始,得到的见解始终是滞后的。这种数据处理方法其实是一种浪费。由于要处理的数据很多,你得需要很长的时间才能获得有用的或是有可操作性的见解。你需要找到一种透过能繁杂的数据,得到为你的公司量身定制的信息的方法。
当我开车进城的时候,我想知道路上的交通堵不堵,需要多久才能达到目的地。如果有人给我的建议跟我同事上次开车走这条路时一样准确,那我就会不那么依赖GPS应用了。Waze就是这个领域的一款非常强大的应用,因为它截取了所有司机的一个巨大的时间断面的信息。这种全球数据的集中化使得所有用户都能获得与背景环境相关的见解。大数据也需要采取类似的做法。企业现在应该停止在自己公司的范围内积攒业务数据了,而是应该真正利用云计算的规模经济效益,不仅仅做到基础设施与应用的共享,更重要的是做到数据的共享。
如果你想将大量数据变成有价值的见解,你就应该利用一个集中化的全球性平台,因为这样一个平台可以借助大量内部和外部资源消化海量信息。企业将数据收集、管理和分析工作外包出去,就可以使这种通用平台专心研究数据科学,而你只需要集中精力,将它为你量身打造的见解应用在提高企业核心能力、强化企业竞争优势上。
20年前的一场“无软件”运动将世界从线下带到了云端。而今天,我们也需要掀起一场“数据有罪”运动。现在已经到了从收集数据转向让这些数据切实发挥作用的时候了。这将的话,在别人还在空谈“大数据”或疲于内部业务智能项目的时候,我们就能够解放精力进行创新。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31