大数据时代要识数
怎么样才算识数,怎么才能做到识数,在罗辑思维的【得到】APP上开设付费专栏《硅谷来信》的吴军博士给出了自己的理解和建议。
大约从4年前开始,我们就说进入了大数据时代,大约从2年前开始,它的应用越来越普及,使得我们社会运行的效率(很多大公司赚钱的效率)大大提升。
在思维上,我们也接受了数据驱动的思维方式。在这样一个时代,我们都必须做到识数,而不是看到一个数据后,给出情绪化的反应。
几个月前,王健林说的“挣一个亿”的小目标,经常被大家拿来调侃。因为在大家的眼里,一个亿是一个巨大无比的数字,甚至近乎一个天文数字。即便在人均GDP为五万元的美国,95%以上的人一辈子是挣不到一亿人民币的。
但是对一个国家而言,一个亿就是一个非常小的数字了。比如中国政府的债务。根据国际货币基金组织提供的数据,截止到2016年3月底,是28万亿人民币。
哇,25万亿耶,是不是永远都还不清了?
其实,一个亿,对任何一个国家来说,都不是什么了不得的数字,对中国来说,一万亿都只是一小颗花生米而已。因为中国当时的GDP大约是68万亿人民币,债务占到GDP的41%左右。
41%,都快接近一半了,那这个债务水平算不算高呢?
对一个年收入10万的家庭来说,40%的债务,即4万的债务确实很高。但是对于中央政府(有些国家叫联邦政府),或者像中国这样可以得到中央拨款支持的地方政府,这个比例非常低。
美国联邦政府的国债到今天累计已经达到21万亿美元(大约相当于146万亿人民币),占其GDP的125%,这个还不算州政府借的一些钱呢。
日本的国债占GDP的200%,法国占100%,英国占90%,意大利占130%,并且都在上升。只有德国占73%左右,但是也比中国高得多。
怎么样,这样一比较,中国算是非常非常低的吧?其实,越是经济不太好的国家,债务水平反而越低。比如俄罗斯,债务只占了GDP的不到20%。
对中国这样的国家,什么算是大数呢?十万亿或者一百万亿!100万亿,用数字表示就是100,000,000,000,000,也就是1后面14个零。如果用小时来度量宇宙的年龄,宇宙到今天大约是100万亿小时。
我们不仅对大数字要敏感,对小数字也应如此。吴军老师说,一位离开Google到某个电商公司负责广告业务的员工有一天跟他抱怨说,他的老板对0.8%的广告点击率相当不满意,觉得太低了。当时,正好北大光华管理学院的一位统计学教授也在场,他开玩笑地说“你回去和他讲,他怎么不上天呢?”
实际上,0.8%的点击率对互联网展示广告来说已经很高了,因为整个行业的水平大约是0.4%。搜索广告的点击率要高很多,但也只有2%。因此,数据的大和小完全要看场景,在互联网广告这个场景下,即使不到1%,也是很大的数字。
比广告点击率更小的数字是支付系统的出错率。在这个行业,千分之一都是很大的数了。因为这个领域最关键的事控制被欺诈的概率,如果做不到千分之一,就不用在这个行业混了。
一般来讲,这个行业的欺诈率是用基点(也就是万分之一,即0.01%)来衡量的。大部分信用卡公司和银行都能讲欺诈率控制在几个基点这样的数量级。支付宝因为有大数据支持,大约能做到一个基点以下,这就使得其他产品难以和他竞争。
与大和小相比,有些时候“准确率”(或者比率)这样的概念更是随着应用场景的不同,标准相差很多。
比如语音识别,如果准确率达不到95%,可用性就不是很好。而对于指纹识别,如果做不到99%以上,就没有太大的意义。
我们经常看到这样的洗涤剂广告,能够杀死99%的细菌。事实上,对那些细菌特别多的东西,杀死99%是远远不够的。因为细菌的繁殖在合适的环境里繁殖速度很快,一天下来可以繁殖上万倍。但是,如果一个过滤器能够过滤掉99%的PM2.5颗粒,在室内大致可以满意了。
那我们怎么知道每一个领域数字的大和小呢?怎样才能不被人忽悠呢?吴军老师说可以从三个层次培养自己对数字的敏感性。
首先,不要一看到别人给的数字,就被唬住了。对它既要关注,也要留个心眼。要牢记数字的大小和场景密切相关。
其次,对于很多事情要有大致的概念,不需要了解细节,但在数量级上要有常识。比如我们在报纸上经常看到“豪宅”两个字,标题党常常用它来吸引眼球。其实只要把那个价钱放到一个地区和当地的房价或者收入水平做一个对比,就能大致做出判断了。
数量级的概念也就是10的多少次方,一个数量级的差距就是差10倍。
最后,我们看到一个数字,在下结论之前,最好问一下自己,它的参照物是什么,凡事大小多少都需要有参照物,在互联网发达的今天,这些参照物并不难找。
对数字敏感,很多时候是我们不吃亏,乃至事业成功的基础。
最后,拜托你帮我个忙,如果你觉得这篇文章对你有所启发,欢迎转发到朋友圈让你的朋友们也看看。谢谢你!
我把每一次的写作都当作一次分享的机会,希望借此遇见更好的自己。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31