大数据征信的发展背景及与传统征信的比较
传统征信在方便个人信贷、辅助金融授信决策、防范信用风险和提升金融获得性等方面发挥着关键作用,但其在互联网金融领域的局限性也不容忽视。一是全国还有5亿左右人口没有在持牌金融机构的信用活动,从而不被其所覆盖。二是随着“互联网+”的发展,互联网上产生、沉淀了大量与个人征信相关的数据,目前还难以被其采用[1]。大数据征信的出现有助于解决上述问题,并在一定程度上取得了快速发展。据我们研究,大数据征信得以发展的基本条件有以下三点:一是我国政策扶持和部署所释放的良好信号;二是以“金融线上化”为代表的互联网金融更巨大的长尾需求;三是大数据技术的强力支撑。
一、政策扶持
自2013年起,我国陆续颁布了一系列法律法规,为征信业的健康发展构建了法律制度框架。2013年3月国务院发布《征信业管理条例》(以下简称《条例》),成为我国首部征信业法规,也是我国征信法制建设的基石。2013年12月为配合《条例》的实施,中国人民银行出台《征信机构管理办法》,贯彻建立健全社会征信体系的要求,确立征信经营活动遵循的制度规范和监管依据。
此外,为提高个人征信服务水平,引入市场竞争,我国为逐步开放征信市场做好立法准备。2015年1月中国人民银行印发《关于做好个人征信业务准备工作的通知》,批准8家机构做好开展个人征信业务的相关准备工作。2015年7月中国人民银行等十部门发布《关于促进互联网金融健康发展的指导意见》(以下简称《指导意见》),《指导意见》提出推动信用基础设施建设,培育互联网金融配套服务体系,鼓励有条件的机构依法申请征信业务许可。监管的改革措施为大数据征信的发展创造了良好的外部环境。
值得注意的是,为加快大数据部署,深化大数据应用,推进落实“互联网+”国家战略,2015年7月国务院印发《促进大数据发展行动纲要》和2015年9月国务院办公厅印发《关于运用大数据加强对市场主体服务和监管的若干意见》。《促进大数据发展行动纲要》中最引人注目的就是开放政府数据和推动产业创新,鼓励大数据在征信业的应用和发展。相关专家认为,大数据是征信建设的重要“矿产资源”,征信建设必须以大数据为依托和支撑,在广度和深度上运用大数据建立信用体系,提高信用评价的全面性、实时性和授信效率。
大数据时代,数据俨然成为等同于能源的战略资源,信息公开和数据开放成为当下时代发展的主题。行政机关在履行行政管理和公共服务职责过程中掌握了海量信息,如何通过信息公开管好、盘活这些数据资产,成为行政机关亟待解决的问题。党的十八届四中全会《中共中央关于全面推进依法治国若干重大问题的决定》明确提出要全面推进政务公开,推进政务公开信息化,加强互联网政务信息数据服务平台建设。数据公开制度的逐渐确立,为社会信息资源的开放、共享与服务提供制度保障。
以上这些法律、法规、条例及制度的制定有利于加强整个征信市场的管理,规范信息提供者、信息使用者以及征信机构的行为,保障信息主体的权益。同时,其他配套制度也正在逐步制订和完善,将与《条例》共同构成征信法律体系,促进我国征信业的健康、可持续发展,更好地满足个人和企业的融资需求。
二、市场需求
近年来,互联网金融异军突起,成为我国经济发展的新兴力量。互联网金融在繁荣发展的同时,由于成立的时间较短,自身风险防控能力较弱,信用评估、风险定价和风险管理等方面都不完善,问题事件不断涌现。一方面,互联网金融的用户大多是具备“长尾特征”的网络用户,这部分用户难以被传统征信所覆盖,且由于行业机构间缺乏信息数据的沟通和交流,致使“一人多贷”重复借款现象突出,整个行业面临着巨大的信用风险。另一方面,由于征信体系不健全,互联网金融公司普遍以线下风控为主,大量尽职调查耗时耗力,既增加了自身的运营成本,且对借款人的信用水平的评估易存有偏差,间接提高融资成本。传统征信机制不健全成为制约互联网金融发展的主要因素。互联网金融的发展为大数据征信的发展提供了巨大的应用前景,倒逼征信跟上时代的步伐,推动征信机制的变革。
三、技术支撑
大数据征信之所以兴起,除了上述两个因素之外,技术支撑也不可或缺。大数据和云计算技术的进步为大数据征信的发展提供了支撑和便利,人工智能算法模型为全面刻画用户违约概率和信用状况提供了有力补充。一方面,随着“互联网+”的发展,老百姓的衣食住行、社会交往与互联网趋于紧密结合,互联网上产生、沉淀了大量与个人征信相关的数据。借助大数据抓取和挖掘技术、云计算技术,这些数据的采集、记录、储存和分析变得更加容易。另一方面,以机器学习为代表的人工智能技术相继被采用,不仅可以分析、归纳和汇总各种渠道获取的结构化和非结构化数据,还可设计多种预测模型(欺诈模型、身份验证模型、还款意愿模型和稳定性模型等)预测信用主体的履约意愿和履约能力,减少违约风险和坏账率。
——大数据征信与传统征信的比较
近年来,伴随互联网金融和大数据技术的发展,大数据征信开始兴起。大数据征信具备覆盖人群广泛、信息维度多元、应用场景丰富和信用评估全面四个创新特点,但与传统征信相比,大数据征信在数据范畴和内涵的效用性、征信机构的独立性及隐私保护等方面还存在诸多问题,需加以重视。
一、征信的基本概念
传统征信是由专业机构通过固定的模型定向采集财务和金融交易信息并对信息进行加工、处理、报告的专业化信用管理服务。传统征信兴起于国外,在美国,以1933年成立的邓白氏公司为代表,在我国主要是以中央人民银行征信系统为代表,是目前我国乃至全球范围内普遍存在的征信业态。我国征信机构的设立和征信业务的开展受《征信业管理条例》的约束,并且需要申请相应的牌照。
大数据征信是指通过对海量的、多样化的、实时的、有价值的数据进行采集、整理、分析和挖掘,并运用大数据技术重新设计征信评价模型算法,多维度刻画信用主体的“画像”,向信息使用者呈现信用主体的违约率和信用状况。
大数据征信活动在《征信业管理条例》所界定的征信业务范围内,其本质仍是对信用主体信息的收集、整理、保存、加工和公布,但与传统征信相比,突出大数据技术在征信活动中的应用,强调数据量大、刻画维度广、信用状况动态交互等特点,可作为征信体系的有益补充。
二、大数据征信的创新特点
从表面上看,大数据征信和传统征信似乎只是数据的获取渠道不同,前者主要来自于互联网,后者主要来自于传统线下渠道,但是二者存在较大的差异。大数据征信创新主要表现在覆盖人群广泛、信息维度多元、应用场景丰富及信用评估全面四个方面,由此带来征信成本的降低和征信效率的提高。
首先,覆盖人群广泛。传统征信主要覆盖在持牌金融机构有信用记录的人群。大数据征信通过大数据技术捕获传统征信没有覆盖的人群,利用互联网留痕协助信用的判断,满足P2P网络借贷、第三方支付及互联网保险等互联网金融新业态身份识别、反欺诈、信用评估等多方面征信需求。
其次,信息维度多元。在互联网时代,大数据征信的信息数据来源更广泛,种类更多样。大数据征信数据不再局限于金融机构、政府机构以及电信提供的个人基本信息、账单信息、信贷记录、逾期记录等,还引入互联网行为轨迹记录、社交和客户评价等数据。这些数据在一定程度上可以反映信息主体的行为习惯、消费偏好以及社会关系,有利于全面评估信息主体的信用风险。
再次,应用场景丰富。大数据征信将不再单纯地用于经济金融活动,还可将应用场景从经济金融领域扩大到日常化、生活化的方方面面,如租房租车、预订酒店、签证、婚恋、求职就业、保险办理等各种需要信用履约的生活场景,在市场营销支持、反欺诈、贷后风险监测与预警和账款催收等方面具有良好的应用表现。
最后,信用评估全面。大数据征信的信用评估模型不仅关注信用主体历史信息的深度挖掘,更看重信用主体实时、动态、交互的信息,以信用主体行为轨迹的研究为基础,在一定程度上可以精准预测其履约意愿、履约能力和履约稳定性。此外,大数据征信运用大数据技术,在综合传统建模技术的基础上采用机器学习建模技术,从多个评估维度评价信用主体的信用状况。
三、大数据征信存在的问题
大数据征信借助大数据技术能够更全面地了解授信对象,减少信息不对称,增加反欺诈能力,同时更精准地进行风险定价,从数据维度和分析角度提升传统征信水平,可以让征信更加科学严谨,是一个必要的补充。但从数据范畴和内涵的效用性、征信机构独立性及隐私保护等方面看,大数据征信仍存在诸多问题,需加以重视。
第一,数据范畴和内涵突破“金融属性”,效用性尚待验证。传统征信的数据主要来源于金融机构和公共部门构成的数据循环,以银行信贷信息为核心,包括社保、公积金、环保、欠税、民事裁决与执行等公共信息,数据相对完整且共识性高。大数据征信采集数据的范畴突破“金融属性”,数据主要来源于电商类平台、社交类平台以及生活服务类平台等,涵盖网上交易数据、社交数据及互联网服务过程中生成的行为数据,这些数据多与借贷行为关系不大,共识性较弱,且各平台的数据完整性各有不同,因而能否作为判断信用主体信用状况的主要指标,尚待市场验证。
第二,数据采集和使用未遵循“独立第三方”基本原则。传统征信坚持独立第三方征信原则,征信机构是“市场中立”的──既不与信息提供者或信息使用者有直接的商业竞争关系,也不介入或影响信息提供者或信息使用者在各自细分市场的竞争。而大数据征信突破“独立第三方”的边界,征信机构数据的采集和使用多源于并应用于自身开展的业务,这样征信报告的有效性得不到保障,公信力备受质疑。而且如果信息提供者或信息使用者控制征信机构,也很难约束其不滥用征信数据,或者损害个人征信权益。另外,征信机构无形当中会获取一定的市场影响力,可能扭曲信息提供者和信息使用者的行为,并对收费有操控力。因此,大数据征信的发展应坚持独立第三方征信基本原则,保持“市场中立”。
第三,隐私保护形势日趋严峻。大数据时代,数据挖据和抓取技术广泛应用,信用主体全方位信息数据得以被全盘收录,海量信息数据的收集给信用主体隐私带来巨大挑战,隐私防护变得更加困难。比如用于特定场合的信息数据被用于其它商业用途,不同机构之间信息数据的交叉验证,隐私侵犯的风险大大增加。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14