还以为你被上节课的内容唬住了~终于等到你,还好没放弃!
本节我们将说明两个问题:总体均值 的区间估计和总体比例 的区间估计。
区间估计经常用于质量控制领域来检测生产过程是否正常运行或者在“控制之中” ,也可以用来监控互联网领域各类数据指标是否在正常区间。
大样本的情况下
已知,
未知,
小样本的情况下
另外补充一个公式,样本量 这个了解就好,大部分情况下是不缺数据的,尽可能选数据量稍大些的数据。
把以上过程编写成Python的自定义函数:
import numpy as np
import scipy.stats
from scipy import stats as sts
def mean_interval(mean=None, sigma=None,std=None,n=None,confidence_coef=0.95):
"""
mean:样本均值
sigma: 总体标准差
std: 样本标准差
n: 样本量
confidence_coefficient:置信系数
confidence_level:置信水平 置信度
alpha:显著性水平
功能:构建总体均值的置信区间
"""
alpha = 1 - confidence_coef
z_score = scipy.stats.norm.isf(alpha / 2) # z分布临界值
t_score = scipy.stats.t.isf(alpha / 2, df = (n-1) ) # t分布临界值
if n >= 30:
if sigma != None:
me = z_score * sigma / np.sqrt(n)
print("大样本,总体 sigma 已知:z_score:",z_score)
elif sigma == None:
me = z_score * std / np.sqrt(n)
print("大样本,总体 sigma 未知 z_score",z_score)
lower_limit = mean - me
upper_limit = mean + me
if n < 30 :
if sigma != None:
me = z_score * sigma / np.sqrt(n)
print("小样本,总体 sigma 已知 z_score * sigma / np.sqrt(n) n z_score = ",z_score)
elif sigma == None:
me = t_score * std / np.sqrt(n)
print("小样本,总体 sigma 未知 t_score * std / np.sqrt(n) n t_score = ",t_score)
print("t_score:",t_score)
lower_limit = mean - me
upper_limit = mean + me
return (round(lower_limit, 1), round(upper_limit, 1))
某网站流量UV数据如下[52,44,55,44,45,59,50,54,62,46,54,42,60,62,43,42,48,55,57,56]
,我们研究一下该网站的总体流量uv均值,我们先把数据放进来
import numpy as np
data = np.array([52,44,55,44,45,59,50,54,62,46,54,42,60,62,43,42,48,55,57,56])
计算一下均值为:
x_bar = data.mean()
x_bar
# 51.5
样本标准差为:
x_std = sts.tstd(data,ddof = 1) # ddof=1时,分母为n-1;ddof=0时,分母为n
x_std
# 6.840283158189472
进行区间估计:
mean_interval(mean=x_bar, sigma=None,std= x_std, n=n, confidence_coef=0.95)
输出结果:
小样本,总体 sigma 未知 t_score * std / np.sqrt(n)
t_score = 2.093024054408263
(48.3, 54.7)
于是我们有95%的把握,该网站的流量uv介于 [48, 55]之间。
值得一提的是,上面这个案例的数据是实际上是公众号山有木兮水有鱼 的按天统计阅读量……有人可能要说了,你这数据也太惨了,而且举个案例都是小样本。我想说,小样本的原因是这新号一共发了也没几天,至于数量低,你帮忙动动小手转发转发,这数据也就高了~希望下次举例的时候这个能变成大样本,均值怎么着也得个千儿八百的,感谢感谢!
其中样本量
def proportion_interval(p=None, n=None, confidence_coef =0.95):
"""
p: 样本比例
n: 样本量
confidence_coef: 置信系数
功能:构建总体比例的置信区间
"""
alpha = 1 - confidence_coef
z_score = scipy.stats.norm.isf(alpha / 2) # z分布临界值
me = z_score * np.sqrt((p * (1 - p)) / n)
lower_limit = p - me
upper_limit = p + me
return (round(lower_limit, 3), round(upper_limit, 3))
下期将为大家带来《Python统计学极简入门》之假设检验
这里分享一个你一定用得到的小程序——CDA数据分析师考试小程序。 它是专为CDA数据分析认证考试报考打造的一款小程序。可以帮你快速报名考试、查成绩、查证书、查积分,通过该小程序,考生可以享受更便捷的服务。 扫码加入CDA小程序,与圈内考生一同学习、交流、进步!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30