例6.1 不同装配方式对生产的过滤系统数量的差异性检验
某城市过滤水系统生产公司,有A、B、C3种方式进行过滤水系统的装配,该公司为了研究三种装配方式生产的过滤系统数量是否有差异,从全体装配工人中抽取了15名工人,然后随机地指派一种装配方式,这样每个装配方式就有5个工人。在指派装配方法和培训工作都完成后,一周内对每名工人的装配过滤系统数量进行统计如下:
方法A | 方法B | 方法C |
---|---|---|
58 | 58 | 48 |
64 | 69 | 57 |
55 | 71 | 59 |
66 | 64 | 47 |
67 | 68 | 49 |
请根据数据判断3种装配方式有无差异
分析过程:由于目标是判断3种装配方式有无差异,多样本的检验用方差分析
于是我们有了原假设和备择假设
:均值不全相等
import pandas as pd
import numpy as np
from scipy import stats
# 数据
A = [58,64,55,66,67]
B = [58,69,71,64,68]
C = [48,57,59,47,49]
data = [A, B, C]
# 方差的齐性检验
w, p = stats.levene(*data)
if p < 0.05:
print('方差齐性假设不成立')
# 成立之后, 就可以进行单因素方差分析
f_value, p_value = stats.f_oneway(*data)
# 输出结果
print("F_value:", f_value)
print("p_value:", p_value)
F_value: 9.176470588235295
p_value: 0.0038184120755124806
结论 选择显著性水平 0.05 的话,p = 0.0038 < 0.05
,故拒绝原假设。支持三种装配方式装配数量均值不全相等的备则假设。
例6.2 不同优惠金额对购买转化率的差异性检验
某公司营销中心为了提升销量,针对某产品设计了3种不同金额的优惠,想测试三种优惠方式对于用户的购买转化率是否有显著影响,先收集到了三种不同方式在6个月内的转化率数据
请根据数据判断3种不同优惠金额的转化率有无差异
优惠A | 优惠B | 优惠C |
---|---|---|
0.043 | 0.05 | 0.048 |
0.047 | 0.048 | 0.05 |
0.051 | 0.045 | 0.047 |
0.049 | 0.055 | 0.056 |
0.045 | 0.048 | 0.054 |
0.0469 | 0.0491 | 0.0509 |
分析过程:由于目标是判断3种不同金额的优惠券对于转化率有无差异,多样本的检验用方差分析
于是我们有了原假设和备择假设
:认为这几组之间的购买率不一样
P < 0.05 拒绝原假设,倾向于支持不同优惠金额购买率不一样的备择假设。认为不同优惠金额会对购买率产生影响 P > 0.05 无法拒绝原假设。认为不同优惠金额不会对购买率产生影响
import pandas as pd
import numpy as np
from scipy import stats
A = [0.043 , 0.047 , 0.051 , 0.049 , 0.045 , 0.0469]
B = [0.05 , 0.048 , 0.045 , 0.055 , 0.048 , 0.0491]
C = [0.048 , 0.05 , 0.047 , 0.056 , 0.054 , 0.0509]
data = [A, B, C]
# 方差的齐性检验
w, p = stats.levene(*data)
if p < 0.05:
print('方差齐性假设不成立')
# 成立之后, 就可以进行单因素方差分析
f_value, p_value = stats.f_oneway(*data)
# 输出结果
print("F_value:", f_value)
print("p_value:", p_value)
# F_value: 2.332956563862427
# p_value: 0.13116820340181937
结论 选择显著性水平 0.05 的话,p = 0.1311 > 0.05
,故无法拒绝原假设。认为不同优惠金额不会对购买率产生影响
这里的等重复实验,意思就是针对每个组合做大于等于两次的实验,比如下方例子中表里A1和B1的组合里面有2个数字,即说明做了两次实验,如果是3个数字则说明3次实验,依次类推。
例6.3 不同燃料种类和推进器的火箭射程差异性检验
火箭的射程与燃料的种类和推进器的型号有关,现对四种不同的燃料与三种不同型号的推进器进行试验,每种组合各发射火箭两次,测得火箭的射程如表(以海里计)(设显著性水平为0.05)
燃料 | B1 | B2 | B3 |
---|---|---|---|
A1 | 58.2 , 52.6 | 56.2 , 41.2 | 65.3 , 60.8 |
A2 | 49.1 , 42.8 | 54.1 , 50.5 | 51.6 , 48.4 |
A3 | 60.1 , 58.3 | 70.9 , 73.2 | 39.2 , 40.7 |
A4 | 75.8 , 71.5 | 58.2 , 51.0 | 48.7 , 41.0 |
import numpy as np
import pandas as pd
d = np.array([[58.2, 52.6, 56.2, 41.2, 65.3, 60.8],
[49.1, 42.8, 54.1, 50.5, 51.6, 48.4],
[60.1, 58.3, 70.9, 73.2, 39.2, 40.7],
[75.8, 71.5, 58.2, 51.0, 48.7,41.4]
])
data = pd.DataFrame(d)
data.index=pd.Index(['A1','A2','A3','A4'],name='燃料')
data.columns=pd.Index(['B1','B1','B2','B2','B3','B3'],name='推进器')
# pandas宽表转长表
data = data.reset_index().melt(id_vars =['燃料'])
data = data.rename(columns={'value':'射程'})
data.sample(5)
燃料 | 推进器 | 射程 |
---|---|---|
A2 | B3 | 48.4 |
A3 | B2 | 73.2 |
A3 | B3 | 39.2 |
A4 | B1 | 71.5 |
A2 | B2 | 54.1 |
import statsmodels.api as sm
from statsmodels.formula.api import ols
# 进行双因素方差分析
model = ols('射程~C(燃料) + C(推进器)+C(燃料):C(推进器)', data =data).fit()
# 打印方差分析表
anova_table = sm.stats.anova_lm(model, typ=2)
anova_table
sum_sq | df | F | PR(>F) | |
---|---|---|---|---|
C(燃料) | 261.675 | 3 | 4.41739 | 0.025969 |
C(推进器) | 370.981 | 2 | 9.3939 | 0.00350603 |
C(燃料):C(推进器) | 1768.69 | 6 | 14.9288 | 6.15115e-05 |
Residual | 236.95 | 12 | nan | nan |
结论:
对燃料因素来说,其p = 0.0259 < 0.05
所以拒绝,认为燃料对射程影响显著;
对推进器因素来说,其p = 0.0035 < 0.05
,所以拒绝,认为推进器对射程影响显著;
对燃料和推进器的交互因素来说,其p = 0.000062< 0.05
,所以拒绝,认为交互因素其对射程影响显著。
在等重复实验中,我们为了检验实验中两个因素的交互作用,针对每对组合至少要做2次以上实验,才能够将交互作用与误差分离开来,在处理实际问题时候,如果我们一直不存在交互作用,或者交互作用对实验指标影响极小,则可以不考虑交互作用,此时每对组合只做一次实验,类似下方例子中的表中数据:
例6.4 不同时间、不同地点颗粒状物含量差异性检验 无重复实验
下面给出了在5个不同地点、不同时间空气中的颗粒状物(单位:mg/m°)含 量的数据记录于表中,试在显著性水平下检验不同时间、不同地点颗粒状物含量有无显著差异?(假设两者没有交互作用〉
因素B -地点 | ||||||
---|---|---|---|---|---|---|
因素A - 时间 | ||||||
1995年10月 | 76 | 67 | 81 | 56 | 51 | |
1996年01月 | 82 | 69 | 96 | 59 | 70 | |
1996年05月 | 68 | 59 | 67 | 54 | 42 | |
1996年08月 | 63 | 56 | 64 | 58 | 37 |
import numpy as np
import pandas as pd
d = np.array([
[76,67,81,56,51],
[82,69,96,59,70],
[68,59,67,54,42],
[63,56,64,58,37]])
data = pd.DataFrame(d)
data.index=pd.Index(['1995年10月','1996年01月','1996年05月','1996年08月'],name='时间')
data.columns=pd.Index(['B1','B2','B3','B4','B5'],name='地点')
# pandas宽表转长表
data = data.reset_index().melt(id_vars =['时间'])
data = data.rename(columns={'value':'颗粒状物含量'})
data.sample(5)
随机查看5条转化后的数据:
时间 | 地点 | 颗粒状物含量 |
---|---|---|
1996年05月 | B4 | 54 |
1995年10月 | B4 | 56 |
1996年05月 | B3 | 67 |
1996年01月 | B2 | 69 |
1996年01月 | B3 | 96 |
import statsmodels.api as sm
from statsmodels.formula.api import ols
# 进行双因素方差分析
model = ols('颗粒状物含量~C(时间) + C(地点)', data =data).fit()
# 打印方差分析表
anova_table = sm.stats.anova_lm(model, typ=2)
anova_table
sum_sq | df | F | PR(>F) | |
---|---|---|---|---|
C(时间) | 1182.95 | 3 | 10.7224 | 0.00103293 |
C(地点) | 1947.5 | 4 | 13.2393 | 0.000234184 |
Residual | 441.3 | 12 | nan | nan |
结论:
对时间因素来说,其p = 0.001033 < 0.05
所以拒绝,认为时间对颗粒状物含量影响显著;
对地点因素来说,其p = 0.000234 < 0.05
,所以拒绝,认为地点对颗粒状物含量影响显著;
下期将为大家带来《统计学极简入门》之相关分析
这里分享一个你一定用得到的小程序——CDA数据分析师考试小程序。 它是专为CDA数据分析认证考试报考打造的一款小程序。可以帮你快速报名考试、查成绩、查证书、查积分,通过该小程序,考生可以享受更便捷的服务。 扫码加入CDA小程序,与圈内考生一同学习、交流、进步!
数据分析咨询请扫描二维码
作为数据分析领域的探险家,我们常常面临着选择正确工具和技能的挑战。在这个数字化时代,学会并精通适合行业需求的工具显得尤为 ...
2024-12-03在数据分析领域,掌握多种软件和编程语言至关重要,选择合适的工具取决于个人需求和背景。让我们一起探索常用的数据分析工具及其 ...
2024-12-03在数据驱动的时代,数据分析成为了关键的技能。选择合适的数据分析工具至关重要,因为它们直接影响着你对数据的理解和分析效果。 ...
2024-12-03在当今数字化时代,数据分析已经成为各行各业中至关重要的角色。随着技术的迅猛发展和数据量的爆炸增长,数据分析师需要不断提升 ...
2024-12-03在当今数据驱动的世界中,数据分析已成为企业决策制定和战略规划的关键。其中,数据可视化是将复杂数据转化为简洁、易懂图形的重 ...
2024-12-03在当今信息爆炸的时代,数据扮演着至关重要的角色。学会利用数据进行分析不仅是一种技能,更是一种战略性决策工具。本文将探讨学 ...
2024-12-03揭示数据的无限价值 学习数据分析不仅仅是一种技能,更是探索信息海洋中宝藏的钥匙。数据分析的实用性体现在多个领域,如企业决 ...
2024-12-03在当今信息爆炸的时代,数据扮演着至关重要的角色。成为一名优秀的数据分析师,不仅需要具备技术实力,更需要拥有跨学科的知识储 ...
2024-12-03在当今数据驱动的世界中,成为一名优秀的数据分析师需要具备多方面的技能和知识。从统计学基础到机器学习算法,再到沟通能力和业 ...
2024-12-03在当今信息爆炸的时代,数据分析扮演着至关重要的角色。从商业决策到科学研究,数据分析为我们提供了深刻的洞察力和指导方向。然 ...
2024-12-03数据分析的基础知识 数据分析是一个多步骤且复杂的过程,旨在从数据中提取有价值信息以支持决策。这涉及数据的收集、清洗、转换 ...
2024-12-03数据分析是一门引人入胜且充满挑战的领域,它串联着数据的意义与我们的决策需求。无论你是初学者还是经验丰富的专家,掌握数据分 ...
2024-12-03数据分析培训的就业前景展现出令人振奋的态势。随着大数据、人工智能等前沿技术的快速发展,数据分析在各行各业中的应用愈发广泛 ...
2024-12-03在当今数字化时代,数据分析技能的重要性日益凸显。随着大数据、人工智能等领域的迅速发展,数据分析已经成为各行各业中备受瞩目 ...
2024-12-03作为一名数据分析师,除了扎实的数学基础外,掌握软技能同样至关重要。本文将深入探讨数据分析领域中不可或缺的软技能,并结合个 ...
2024-12-03市场需求与技术驱动 数据分析师的职业前景广阔,市场需求旺盛。在金融、医疗、零售、科技等领域,企业对数据分析师的需求不断攀 ...
2024-12-03市场需求与前景 数据分析师的职业前景广阔,伴随着多元化技能要求和清晰的职业发展路径。 在金融、医疗、零售、科技等领域, ...
2024-12-03作为数据分析师,掌握正确的工具和技能至关重要。在当今数据驱动的世界中,Python作为一种多才多艺的编程语言,在数据分析领域扮 ...
2024-12-03在当今数据驱动的世界中,数据分析师扮演着至关重要的角色。他们需要掌握各种工具和技能来从海量数据中提炼出有价值的信息。其中 ...
2024-12-03数据分析实践是一门引人入胜的艺术,融合了技术与创意,为各行业带来前所未有的洞察力与决策支持。本文将探讨数据分析实战案例的 ...
2024-12-03