前面的假设检验、方差分析基本上都是围绕差异性分析,不论是单个总体还是两个总体及以上,总之都是属于研究“区别”,从本节开始,我们关注“联系”,变量之间的关系分为 函数关系和相关关系。 本节这里重点探讨的是不同类型变量之间的相关性,千万记住一点相关性不代表因果性。除表中列出的常用方法外,还有Tetrachoric、相关系数等。
变量类型 | 变量类型 | 相关系数计算方法 | 示例 |
---|---|---|---|
连续型变量 | 连续型变量 | Pearson(正态)/Spearman(非正态) | 商品曝光量和购买转化率 |
二分类变量(无序) | 连续型变量 | Point-biserial | 性别和疾病指数 |
无序分类变量 | 连续型变量 | 方差分析 | 不同教育水平的考试成绩 |
有序分类变量 | 连续型变量 | 连续指标离散化后当做有序分类 | 商品评分与购买转化率 |
二分类变量 | 二分类变量 | 数学公式: 检验 联合 Cramer's V | 性别和是否吸烟 |
二分类变量(有序) | 连续型变量 | Biserial | 乐器练习时间与考级是否通过 |
无序分类变量 | 无序分类变量 | 数学公式: 检验 / Fisher检验 | 手机品牌和年龄段 |
有序分类变量 | 无序分类变量 | 数学公式: 检验 | 满意度和手机品牌 |
有序分类变量 | 有序分类变量 | Spearman /Kendall Tau相关系数 | 用户等级和活跃程度等级 |
Pearson相关系数度量了两个连续变量之间的线性相关程度;
import random
import numpy as np
import pandas as pd
np.random.seed(10)
df = pd.DataFrame({'商品曝光量':[1233,1333,1330,1323,1323,1142,1231,1312,1233,1123],
'购买转化率':[0.033,0.034,0.035,0.033,0.034,0.029,0.032,0.034,0.033,0.031]})
df
pd.Series.corr(df['商品曝光量'], df['购买转化率'],method = 'pearson') # pearson相关系数
# 0.885789300493948
import scipy.stats as stats
# 假设有两个变量X和Y
X = df['商品曝光量']
Y = df['购买转化率']
# 使用spearmanr函数计算斯皮尔曼相关系数和p值
corr, p_value = stats.pearsonr(X, Y)
print("Pearson相关系数:", corr)
print("p值:", p_value)
# Pearson相关系数: 0.8857893004939478
# p值: 0.0006471519603654732
Spearman等级相关系数可以衡量非线性关系变量间的相关系数,是一种非参数的统计方法,可以用于定序变量或不满足正态分布假设的等间隔数据;
import random
import numpy as np
import pandas as pd
np.random.seed(10)
df = pd.DataFrame({'品牌知名度排位':[9,4,3,6,5,8,1,7,10,2],
'售后服务质量评价排位':[8,2,5,4,7,9,1,6,10,3]})
df
pd.Series.corr(df['品牌知名度排位'], df['售后服务质量评价排位'],method = 'spearman') # spearman秩相关
# 0.8787878787878788
import scipy.stats as stats
# 假设有两个变量X和Y
X = df['品牌知名度排位']
Y = df['售后服务质量评价排位']
# 使用spearmanr函数计算斯皮尔曼相关系数和p值
corr, p_value = stats.spearmanr(X, Y)
print("斯皮尔曼相关系数:", corr)
print("p值:", p_value)
# 斯皮尔曼相关系数: 0.8787878787878788
# p值: 0.0008138621117322101
结论:p = 0.0008<0.05
,表明两变量之间的正向关系很显著。
假设我们想要研究性别对于某种疾病是否存在影响。我们有一个二元变量“性别”(男、女)和一个连续型变量“疾病指数”。我们想要计算性别与疾病指数之间的相关系数,就需要用到Point-biserial相关系数。
import scipy.stats as stats
# 创建一个列表来存储数据
gender = [0, 1, 0, 1, 1, 0]
disease_index = [3.2, 4.5, 2.8, 4.0, 3.9, 3.1]
# 使用pointbiserialr函数计算Point-biserial相关系数和p值
corr, p_value = stats.pointbiserialr(gender, disease_index)
print("Point-biserial相关系数:", corr)
print("p值:", p_value)
# Point-biserial相关系数: 0.9278305692406299
# p值: 0.007624695507848026
结论:p = 0.007<0.05
,表明两变量之间的正向关系很显著。即性别与疾病指数正相关
假设我们想要比较不同教育水平的学生在CDA考试成绩上是否存在显著差异。我们有一个无序分类变量“教育水平”(高中、本科、研究生)和一个连续型变量“考试成绩”。
import pandas as pd
import statsmodels.api as sm
from statsmodels.formula.api import ols
# 创建一个DataFrame来存储数据
data = pd.DataFrame({
'教育水平': ['高中', '本科', '本科', '研究生', '高中', '本科', '研究生'],
'考试成绩': [80, 90, 85, 95, 75, 88, 92]
})
# 使用ols函数创建一个线性模型
model = ols('考试成绩 ~ C(教育水平)', data=data).fit()
# 使用anova_lm函数进行方差分析
anova_table = sm.stats.anova_lm(model, typ=2)
anova_table
结论:p = 0.0102<0.05
,拒绝原假设,表明两变量之间的正向关系很显著。教育水平与考试成绩正相关
将连续型变量离散化后当做有序分类,然后用 有序分类变量 VS 有序分类变量的方法
一项研究调查了不同性别的成年人对在公众场合吸烟的态度,结果如表所示。那么,性别与对待吸烟的态度之间的相关程度
- | 赞同 | 反对 |
---|---|---|
男 | 15 | 10 |
女 | 10 | 26 |
import numpy as np
from scipy.stats import chi2_contingency
observed = np.array([[15, 10],
[10, 26]])
observed
chi2, p, dof, expected = chi2_contingency(observed,correction =False) # correction =False
# 卡方值
# P值
# 自由度:
# 与原数据数组同维度的对应期望值
chi2, p
#(6.3334567901234555, 0.011848116168529757)
结论:p = 0.0118<0.05
,拒绝原假设,表明两变量之间的正向关系很显著。
phi = np.sqrt(chi2/n)
print("phi's V:", phi)
# phi's V: 0.3222222222222222
这里只列出 指标 和 Cramer V指标 的计算,其他计算方式请读者自行研究。
# 计算Cramer's V
contingency_table = observed
n = contingency_table.sum().sum()
phi_corr = np.sqrt(chi2 / (n * min(contingency_table.shape) - 1))
v = phi_corr / np.sqrt(min(contingency_table.shape) - 1)
print("Cramer's V:", v)
# Cramer's V: 0.22878509151645754
import numpy as np
from scipy.stats import pearsonr
# 生成随机的二元变量
binary_variable = np.random.choice([0, 1], size=100)
# 生成随机的连续变量
continuous_variable = np.random.normal(loc=0, scale=1, size=100)
# 注:此处的代码未经严格考证,请谨慎使用
def biserial_correlation(binary_variable, continuous_variable):
binary_variable_bool = binary_variable.astype(bool)
binary_mean = np.mean(binary_variable_bool)
binary_std = np.std(binary_variable_bool)
binary_variable_norm = (binary_variable_bool - binary_mean) / binary_std
corr, _ = pearsonr(binary_variable_norm, continuous_variable)
biserial_corr = corr * (np.std(continuous_variable) / binary_std)
return biserial_corr
# 计算Biserial相关系数
biserial_corr = biserial_correlation(binary_variable, continuous_variable)
print("Biserial相关系数:", biserial_corr)
Biserial相关系数: -0.2061772328681707
参考 检验
参考 检验
Kendall秩相关系数也是一种非参数的等级相关度量,类似于Spearman等级相关系数。
import random
import numpy as np
import pandas as pd
np.random.seed(10)
df = pd.DataFrame({'品牌知名度排位':[9,4,3,6,5,8,1,7,10,2],
'售后服务质量评价排位':[8,2,5,4,7,9,1,6,10,3]})
df
pd.Series.corr(df['品牌知名度排位'], df['售后服务质量评价排位'],method = 'kendall') # Kendall Tau相关系数
# 0.7333333333333333
from scipy.stats import kendalltau
# 两个样本数据
x = df['品牌知名度排位']
y = df['售后服务质量评价排位']
# 计算Kendall Tau相关系数
correlation, p_value = kendalltau(x, y)
print("Kendall Tau相关系数:", correlation)
print("p值:", p_value)
# Kendall Tau相关系数: 0.7333333333333333
# p值: 0.002212852733686067
浮生皆纵,恍如一梦,让我们只争朝夕,不负韶华!
下期将为大家带来《统计学极简入门》之 再看t检验、F检验、检验
这里分享一个你一定用得到的小程序——CDA数据分析师考试小程序。 它是专为CDA数据分析认证考试报考打造的一款小程序。可以帮你快速报名考试、查成绩、查证书、查积分,通过该小程序,考生可以享受更便捷的服务。 扫码加入CDA小程序,与圈内考生一同学习、交流、进步!
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20