1. 奇异值分解 SVD(singular value decomposition)
1.1 SVD评价
优点: 简化数据, 去除噪声和冗余信息, 提高算法的结果
缺点: 数据的转换可能难以理解
1.2 SVD应用
(1) 隐性语义索引(latent semantic indexing, LSI)/隐性语义分析(latent semantic analysis, LSA)
在LSI中, 一个矩阵由文档和词语组成的.在该矩阵上应用SVD可以构建多个奇异值, 这些奇异值代表文档中的概念或主题, 可以用于更高效的文档搜索.
(2) 推荐系统
先利用SVD从数据中构建一个主题空间, 然后在该主题空间下计算相似度.
1.3 SVD分解
SVD是一种矩阵分解技术,其将原始的数据集矩阵A(m*n)分解为三个矩阵,分解得到的三个矩阵的维度分别为m*m,m*n,n*n.其中除了对角元素不为0,其它元素均为0,其对角元素称为奇异值,且按从大到小的顺序排列, 这些奇异值对应原始数据集矩阵A的奇异值,即A*A(T)的特征值的平方根.
在某个奇异值(r个)之后, 其它的奇异值由于值太小,被忽略置为0, 这就意味着数据集中仅有r个重要特征,而其余特征都是噪声或冗余特征.如下图所示:
问题: 如何选择数值r?
解答: 确定要保留的奇异值数目有很多启发式的策略,其中一个典型的做法就是保留矩阵中90%的能量信息.为了计算能量信息,将所有的奇异值求其平方和,从大到小叠加奇异值,直到奇异值之和达到总值的90%为止;另一种方法是,当矩阵有上万个奇异值时, 直接保留前2000或3000个.,但是后一种方法不能保证前3000个奇异值能够包含钱90%的能量信息,但是操作简单.
****SVD分解很耗时,通过离线方式计算SVD分解和相似度计算,是一种减少冗余计算和推荐所需时间的办法.
2. 基于协同过滤的推荐引擎
2.1 定义
协同过滤是通过将用户和其他用户的数据进行对比来实现推荐的.
例如: 试图对某个用户喜欢的电影进行预测,搜索引擎会发现有一部电影该用户还没看过,然后它会计算该电影和用户看过的电影之间的相似度, 如果相似度很高, 推荐算法就会认为用户喜欢这部电影.
缺点: 在协同过滤情况下, 由于新物品到来时由于缺乏所有用户对其的喜好信息,因此无法判断每个用户对其的喜好.而无法判断某个用户对其的喜好,也就无法利用该商品.
2.2 相似度计算
协同过滤利用用户对食物的意见来计算相似度,下图给出了一些用户对菜的评级信息所组成的矩阵:
定义相似度在0-1之间变化,且物品对越相似,其相似度值越大,可以使用公式 相似度 = 1/(1 + 距离) 来计算相似度.
计算距离的方法如下:
(1) 欧氏距离
(2)皮尔逊相关系数(pearson correlation)
度量两个向量间的相似度,该方法优于欧氏在于其对用户评级的量级不敏感,例如某个人对所有物品的评分都是5分,另一个人对所有物品评分都是1分,皮尔逊相关系数认为这两个评分向量是相等的. 不过皮尔逊相关系数的取值范围是(-1,1),通过0.5 + 0.5 * corrcoef()将其归一化到0-1之间.
(3) 余弦相似度( cosine similarity)
计算的是两个向量夹角的余弦值.其取值范围是(-1,1),因此也要将其归一化到(0,1)区间.
以下是这三种相似度计算方法的代码实现:
<span style="font-size:18px;">def eulidSim(in1,in2):
return 1.0/(1.0+la.norm(in1-in2))
def pearsonSim(in1,in2):
if len(in1) < 3: #检查是否存在3个或更多的点,小于的话,这两个向量完全相关
return 1.0
return 0.5 + 0.5 * corrcoef(in1,in2,rowvar = 0)[0][1]
</span><span style="font-size:18px;"> def cosSim(in1,in2):
num = float(in1.T * in2)
denom = la.norm(in1) * la.norm(in2)
return 0.5 + 0.5 * (num/denom)
</span>
2.3 餐馆菜推荐引擎
(1) 用处: 推荐餐馆食物. 给定一个用户, 系统会为此用户推荐N个最好的推荐菜.为了实现这一目的,要做到:
寻找用户没有评级的菜, 即在用户-物品矩阵中的0值;
在用户没有评级的所有物品中,对每个物品预计一个可能的评级分数.
对这些物品的评分从高到低进行排序,返回前n个物品
下面是实现代码:
<span style="font-size:18px;">#计算在给定相似度计算方法的条件下,用户user对物品item的估计评分值
def standEst(dataMat,user,simMea,item):
n = shape(dataMat)[1]
simTotal = 0.0
ratSimTotal = 0.0
for j in range(n):
userRate = dataMat[user,j]
if userRate == 0 :
continue
#得到对菜item和j都评过分的用户id,用来计算物品item和j之间的相似度
overlap = nonzero(logical_and(dataMat[:,item].A>0,dataMat[:,j].A>0))[0]
if len(overlap) == 0:
similarity = 0
else:
#计算物品item和j之间的相似度(必须选取用户对这两个物品都评分的用户分数构成物品分数向量)
similarity = simMea(dataMat[overlap,item],dataMat[overlap,j])
simTotal += similarity
ratSimTotal += similarity * userRate
if simTotal ==0:
return 0
else:
return ratSimTotal/simTotal #归一化处理
#输入依次是数据矩阵,用户编号,返回的菜的个数,距离计算方法,获得物品评分的函数
def recommend(dataMat,user,n=3,simMea=cosSim,estMethod=standEst):
#返回user用户未评分的菜的下标
unratedItem = nonzero(dataMat[user,:].A == 0)[1]
if(len(unratedItem) == 0):
return 'you rated every one'
itemScore = []
#对每个没评分的菜都估计该用户可能赋予的分数
for item in unratedItem:
score = estMethod(dataMat,user,simMea,item)
itemScore.append((item,score))
#返回评分最高的前n个菜下标以及分数
return sorted(itemScore, key = lambda jj:jj[1],reverse = True)[:n]</span>
2.4 利用SVD提高推荐效果
实际的数据集得到的矩阵相当稀疏,因此可以先利用SVD将原始矩阵映射到低维空间中,; 然后再在低维空间中, 计算物品间的相似度,大大减少计算量.
其代码实现如下:
<span style="font-size:18px;">#通过SVD对原始数据矩阵降维,便于计算物品间的相似度
def scdEst(dataMat,user,simMea,item):
n = shape(dataMat)[1]
simTotal = 0.0
ratSimTotal = 0.0
u,sigma,vt = la.svd(dataMat) #sigma是行向量
sig4 = mat(eye(4) * sigma[:4]) #只利用最大的4个奇异值,将其转换为4*4矩阵,非对角元素为0
xformedItems = dataMat.T * u[:,:4] * sig4.I #得到n*4
for j in range(n):
userRate = dataMat[user,j]
if userRate == 0 or j == item:
continue
#得到对菜item和j都评过分的用户id,用来计算物品item和j之间的相似度
#overlap = nonzero(logical_and(dataMat[:,item].A>0,dataMat[:,j].A>0))[0]
#if len(overlap) == 0:
# similarity = 0
#else:
#计算物品item和j之间的相似度
# similarity = simMea(dataMat[overlap,item],dataMat[overlap,j])
similarity = simMea(xformedItems[item,:].T,xformedItems[j,:].T)
simTotal += similarity
ratSimTotal += similarity * userRate
if simTotal ==0:
return 0
else:
return ratSimTotal/simTotal #归一化处理</span>
3. 基于SVD的图像压缩
<span style="font-size:18px;">#打印矩阵
def printMat(in1,thresh=0.8):
for i in range(32):
for k in range(32):
if(float(in1[i,k]) > thresh):
print 1,
else:
print 0,
print ''
#利用SVD实现图像压缩,允许基于任意给定的奇异值来重构图像,默认去前3个奇异值
def imgCompress(numSV=3,thresh=0.8):
#32*32 matrix
my1 = []
for line in open('0_5.txt').readlines():
newrow = []
for i in range(32):
newrow.append(int(line[i]))
my1.append(newrow)
myMat = mat(my1)
print '***original matrix***'
printMat(myMat)
u,sigma,vt = la.svd(myMat)
#将sigma矩阵化,即sigrecon的对角元素是sigma的元素
sigrecon = mat(zeros((numSV,numSV)))
for k in range(numSV):
sigrecon[k,k] = sigma[k]
#重构矩阵
reconMat = u[:,:numSV] * sigrecon * vt[:numSV,:]
print '***reconstruct matrix***'
printMat(reconMat)</span>
以数字为例:数字0存储为32*32的矩阵,需要存储1024个数据; 通过实验发现只需要2个奇异值就能够很精确地对图像进行重构,u,vt的大小都是32*2的矩阵,再加上2个奇异值,则需要32*2*2+2=130个0-1值来存储0;通过对比发现,实现了几乎10倍的压缩比.
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20