这里我们创建一个DataFrame
命名为df
:
import numpy as np
import pandas as pd
d = np.array([[81, 28, 24, 25, 96],
[ 8, 35, 56, 98, 39],
[13, 39, 55, 36, 3],
[70, 54, 69, 48, 12],
[63, 80, 97, 25, 70]])
df = pd.DataFrame(data = d,
columns=list('abcde'))
df
a | b | c | d | e | |
---|---|---|---|---|---|
0 | 81 | 28 | 24 | 25 | 96 |
1 | 8 | 35 | 56 | 98 | 39 |
2 | 13 | 39 | 55 | 36 | 3 |
3 | 70 | 54 | 69 | 48 | 12 |
4 | 63 | 80 | 97 | 25 | 70 |
查看前n行
df.head(2)
a | b | c | d | e | |
---|---|---|---|---|---|
0 | 81 | 28 | 24 | 25 | 96 |
1 | 8 | 35 | 56 | 98 | 39 |
查看后n行
df.tail(2)
a | b | c | d | e | |
---|---|---|---|---|---|
3 | 70 | 54 | 69 | 48 | 12 |
4 | 63 | 80 | 97 | 25 | 70 |
查看随机N行
df.sample(2)
a | b | c | d | e | |
---|---|---|---|---|---|
1 | 8 | 35 | 56 | 98 | 39 |
3 | 70 | 54 | 69 | 48 | 12 |
单列选取,我们有3种方式可以实现
第一种,直接在[]
里面写上要筛选的列名
df['a']
0 81
1 8
2 13
3 70
4 63
Name: a, dtype: int64
第二种,在.iloc[]
里的,
前面写上要筛选的行索引,在,
后面写上要筛选的列索引。其中:
代表所有,0:3
代表从索引0到2
df.iloc[0:3,0]
0 81
1 8
2 13
Name: a, dtype: int64
第三种,直接.
后面写上列名
df.a
0 81
1 8
2 13
3 70
4 63
Name: a, dtype: int64
同样的,选择多列常见的也有3种方式:
第一种,直接在[]
里面写上要筛选的列名组成的列表['a','c','d']
df[['a','c','d']]
a | c | d | |
---|---|---|---|
0 | 81 | 24 | 25 |
1 | 8 | 56 | 98 |
2 | 13 | 55 | 36 |
3 | 70 | 69 | 48 |
4 | 63 | 97 | 25 |
第二种,在.iloc[]
里面行索引位置写:
选取所有行,列索引位置写上要筛选的列索引组成的列表[0,2,3]
df.iloc[:,[0,2,3]]
a | c | d | |
---|---|---|---|
0 | 81 | 24 | 25 |
1 | 8 | 56 | 98 |
2 | 13 | 55 | 36 |
3 | 70 | 69 | 48 |
4 | 63 | 97 | 25 |
第三种,在.loc[]
里面的行索引位置写:
来选取所有行,在列索引位置写上要筛选的列索引组成的列表['a','c','d']
df.loc[:,['a','c','d']]
a | c | d | |
---|---|---|---|
0 | 81 | 24 | 25 |
1 | 8 | 56 | 98 |
2 | 13 | 55 | 36 |
3 | 70 | 69 | 48 |
4 | 63 | 97 | 25 |
直接选取第一行
df[0:1]
a | b | c | d | e | |
---|---|---|---|---|---|
0 | 81 | 28 | 24 | 25 | 96 |
用loc
选取第一行
df.loc[0:0]
a | b | c | d | e | |
---|---|---|---|---|---|
0 | 81 | 28 | 24 | 25 | 96 |
选取任意多行
df.iloc[[1,3],]
a | b | c | d | e | |
---|---|---|---|---|---|
1 | 8 | 35 | 56 | 98 | 39 |
3 | 70 | 54 | 69 | 48 | 12 |
选取连续多行
df.iloc[1:4,:]
a | b | c | d | e | |
---|---|---|---|---|---|
1 | 8 | 35 | 56 | 98 | 39 |
2 | 13 | 39 | 55 | 36 | 3 |
3 | 70 | 54 | 69 | 48 | 12 |
指定行列值
df.iat[2,2] # 根据行列索引
55
df.at[2,'c'] # 根据行列名称
55
指定行列区域
df.iloc[[2,3],[1,4]]
b | e | |
---|---|---|
2 | 39 | 3 |
3 | 54 | 12 |
以上是关于如何查看一个DataFrame里的数据,包括用[]
、iloc
、iat
等方式选取数据,接下来我们来看如何用条件表达式来筛选数据:
这里分享一个你一定用得到的小程序——CDA数据分析师考试小程序。 它是专为CDA数据分析认证考试报考打造的一款小程序。可以帮你快速报名考试、查成绩、查证书、查积分,通过该小程序,考生可以享受更便捷的服务。 扫码加入CDA小程序,与圈内考生一同学习、交流、进步!
数据分析咨询请扫描二维码
在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16在现代企业中,数据分析师扮演着至关重要的角色。他们不仅负责处理和分析大量的数据,还需要将这些分析结果转化为切实可行的商业 ...
2024-12-16在当今的大数据时代,数据分析已经成为推动企业战略的重要组成部分。无论是金融、医疗、零售,还是制造业,各个行业对数据分析的 ...
2024-12-16在当今这个以数据为驱动力的时代,数据分析领域正在迅速扩展与发展。随着大数据、人工智能和机器学习技术的不断进步,数据分析已 ...
2024-12-16在信息爆炸和数据驱动的时代,数据分析专业是否值得一选成为许多人思考的议题。无论是刚刚迈入大学校门的新生,还是考虑职业转型 ...
2024-12-16适合数据分析专业学生的实习岗位有很多,以下是一些推荐: 阿里巴巴数据分析岗位实习:适合经济、统计学、数学及计算机专业的 ...
2024-12-16