京公网安备 11010802034615号
经营许可证编号:京B2-20210330
分组聚合(group by)顾名思义就是分2步:
groupby()对某列进行分组agg()函数里应用聚合函数计算结果,如sum()、mean()、count()、max()、min()等,用于对每个分组进行聚合计算。import pandas as pd
import numpy as np
import random
df = pd.DataFrame({'A': ['a', 'b', 'a', 'b','a', 'b'],
'B': ['L', 'L', 'M', 'N','M', 'M'],
'C': [107, 177, 139, 3, 52, 38],
'D': [22, 59, 38, 50, 60, 82]})
df
| A | B | C | D | |
|---|---|---|---|---|
| 0 | a | L | 107 | 22 |
| 1 | b | L | 177 | 59 |
| 2 | a | M | 139 | 38 |
| 3 | b | N | 3 | 50 |
| 4 | a | M | 52 | 60 |
| 5 | b | M | 38 | 82 |
单列分组
① 对单列分组后应用sum聚合函数
df.groupby('A').sum()
| C | D | |
|---|---|---|
| A | ||
| a | 298 | 120 |
| b | 218 | 191 |
② 对单列分组后应用单个指定的聚合函数
df.groupby('A').agg({'C': 'min'}).rename(columns={'C': 'C_min'})
| C_min | |
|---|---|
| A | |
| a | 52 |
| b | 3 |
③ 对单列分组后应用多个指定的聚合函数
df.groupby(['A']).agg({'C':'max','D':'min'}).rename(columns={'C':'C_max','D':'D_min'})
| C_max | D_min | |
|---|---|---|
| A | ||
| a | 139 | 22 |
| b | 177 | 50 |
两列分组
① 对多列分组后应用sum聚合函数:
df.groupby(['A', 'B']).sum()
| C | D | ||
|---|---|---|---|
| A | B | ||
| a | L | 107 | 22 |
| M | 191 | 98 | |
| b | L | 177 | 59 |
| M | 38 | 82 | |
| N | 3 | 50 |
② 对两列进行group 后,都应用max聚合函数
df.groupby(['A','B']).agg({'C':'max'}).rename(columns={'C': 'C_max'})
| C_max | ||
|---|---|---|
| A | B | |
| a | L | 107 |
| M | 139 | |
| b | L | 177 |
| M | 38 | |
| N | 3 |
③ 对两列进行分组group 后,分别应用max、min聚合函数
df.groupby(['A','B']).agg({'C':'max','D':'min'}).rename(columns={'C':'C_max','D':'D_min'})
| C_max | D_min | ||
|---|---|---|---|
| A | B | ||
| a | L | 107 | 22 |
| M | 139 | 38 | |
| b | L | 177 | 59 |
| M | 38 | 82 | |
| N | 3 | 50 |
补充1: 应用自定义的聚合函数
df = pd.DataFrame({'A': ['a', 'b', 'a', 'b','a', 'b'],
'B': ['L', 'L', 'M', 'N','M', 'M'],
'C': [107, 177, 139, 3, 52, 38],
'D': [22, 59, 38, 50, 60, 82]})
df
| A | B | C | D | |
|---|---|---|---|---|
| 0 | a | L | 107 | 22 |
| 1 | b | L | 177 | 59 |
| 2 | a | M | 139 | 38 |
| 3 | b | N | 3 | 50 |
| 4 | a | M | 52 | 60 |
| 5 | b | M | 38 | 82 |
# 使用自定义的聚合函数计算每个分组的最大值和最小值
def custom_agg(x):
return x.max() - x.min()
result = df[['B','C']].groupby('B').agg({'C': custom_agg})
result
| C | |
|---|---|
| B | |
| L | 70 |
| M | 101 |
| N | 0 |
补充2: 开窗函数(类似于SQL里面的over partition by):
使用transform函数计算每个分组的均值
# 使用transform函数计算每个分组的均值
df['B_C_std'] = df[['B','C']].groupby('B')['C'].transform('mean')
df
| A | B | C | D | B_C_std | |
|---|---|---|---|---|---|
| 0 | a | L | 107 | 22 | 142.000000 |
| 1 | b | L | 177 | 59 | 142.000000 |
| 2 | a | M | 139 | 38 | 76.333333 |
| 3 | b | N | 3 | 50 | 3.000000 |
| 4 | a | M | 52 | 60 | 76.333333 |
| 5 | b | M | 38 | 82 | 76.333333 |
补充3: 分组聚合拼接字符串 pandas实现类似 group_concat 功能
假设有这样一个数据:
df = pd.DataFrame({
'姓名': ['张三', '张三', '张三', '李四', '李四', '李四'],
'科目': ['语文', '数学', '英语', '语文', '数学', '英语']
})
df
| 姓名 | 科目 | |
|---|---|---|
| 0 | 张三 | 语文 |
| 1 | 张三 | 数学 |
| 2 | 张三 | 英语 |
| 3 | 李四 | 语文 |
| 4 | 李四 | 数学 |
| 5 | 李四 | 英语 |
补充:按某列分组,将另一列文本拼接合并
按名称分组,把每个人的科目拼接到一个字符串:
# 对整个group对象中的所有列应用join 连接元素
(df.astype(str)# 先将数据全转为字符
.groupby('姓名')# 分组
.agg(lambda x : ','.join(x)))[['科目']]# join 连接元素
| 科目 | |
|---|---|
| 姓名 | |
| 张三 | 语文,数学,英语 |
| 李四 | 语文,数学,英语 |
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31