ID3算法
ID3和C4.5都是由澳大利亚计算机科学家Ross Quinlan开发的决策树构建算法,其中C4.5是在ID3上发展而来的。
ID3算法的核心是在决策树各个结点上应用信息增益准则选择特征,递归地构建决策树。具体方法是:从根结点(root node)开始,对结点计算所有可能的特征的信息增益,选择信息增益最大的特征作为结点的特征,由该特征的不同取值建立子结点;再对子结点递归地调用以上方法,构建决策树;直到所有特征的信息增益均很小或没有特征可以选择为止。最后得到一棵决策树。ID3相当于用极大似然法进行概率模型的选择。 下面我们给出一个更加正式的ID3算法的描述:
若D中所有实例属于同一类Ck,则T为单结点树,并将类Ck作为该结点的类标记,返回T;
若A=∅,则T为单结点树,并将D中实例数最大的类Ck作为该结点的类标记,返回T;
否则,计算A中各特征对D的信息增益,选择信息增益最大的特征Ag;
(1) 如果Ag的信息增益小于阈值ϵ,则置T为单结点树,并将D中实例数最大的类Ck作为该结点的类标记,返回T;
(2) 否则,对Ag的每一可能值ai,依Ag=ai将D分割为若干非空子集Di,将Di中实例数最大的类作为标记,构建子结点,由结点及其子结点构成树T,返回T;
对第i个子结点,以Di为训练集,以A−{Ag}为特征集,递归地调用步骤(1)~(3),得到子树Ti,返回Ti。
下面我们来看一个具体的例子,我们的任务是根据天气情况计划是否要外出打球:
首先来算一下根节点的熵:
然后再分别计算每一种划分的信息熵,比方说我们选择Outlook这个特征来做划分,那么得到的信息熵为
据此可计算采用Outlook这个特征来做划分时的信息增益为
同理,选用其他划分时所得到之信息增益如下:
取其中具有最大信息增益的特征来作为划分的标准,然后你会发现其中一个分支的熵为零(时间中阈值可以设定来惩罚过拟合),所以把它变成叶子,即得
对于其他熵不为零(或者大于预先设定的阈值)的分支,那么则需要做进一步的划分
根据上述的规则继续递归地执行下去。最终,我们得到了如下一棵决策树。
C4.5算法
C4.5是2006年国际数据挖掘大会票选出来的十大数据挖掘算法之首,可见它应该是非常powerful的!不仅如此,事实上,C4.5的执行也相当的straightforward。
C4.5算法与ID3算法相似,C4.5算法是由ID3算法演进而来的。C4.5在生成的过程中,用信息增益比来选择特征。下面我们给出一个更加正式的C4.5算法的描述:
如果D中所有实例属于同一类Ck,则置T为单结点树,并将Ck作为该结点的类,返回T;
如果A=∅,则置T为单结点树,并将D中实例数最大的类Ck作为该结点的类,返回T;
否则,计算A中各特征对D的信息增益比,选择信息增益比最大的特征Ag;
(1) 如果Ag的信息增益比小于阈值ϵ,则置T为单结点树,并将D中实例数最大的类Ck作为该结点的类,返回T;
(2) 否则,对Ag的每一可能值ai,依Ag=ai将D分割为若干非空子集Di,将Di中实例数最大的类作为标记,构建子结点,由结点及其子结点构成树T,返回T;
对结点i,以Di为训练集,以A−{Ag}为特征集,递归地调用步骤(1)~(3),得到子树Ti,返回Ti。
How to do it in practice?
易见,C4.5跟ID3的执行步骤非常类似,只是在划分时所采用的准则不同。我们这里不再赘述。但是这里可以来看看在实际的数据分析中,该如何操作。我们所使用的数据是如下所示的一个csv文件,文件内容同本文最初给出的Play Ball例子中的数据是完全一致的。
使用Weka进行数据挖掘是非常容易的,你不再需要像R语言或者MATLAB那样编写代码或者调用函数。基于GUI界面,在Weka中你只需要点点鼠标即可!首先我们单击“Explorer”按钮来打开操作的主界面,如下图所示。
然后我们单击“Open File…”,并从相应的目录下选择你要用来进行模型训练的数据文件,如下图所示。
Weka提供了非常易于操作的各种数据预处理功能,你可以自己尝试探索一下。注意到属性Day其实在构建决策树时是不需要的,我选中该属性,并将其移除,如下图所示。
完成数据预处理后,我们就可以开始进行模型训练了。因为我们是要建立决策树,所以选择“Classify”选项卡,然后在“Classifier”中选择J48。你可以能会疑惑我们不是要使用C4.5算法建立决策树吗?为什么要选择J48呢?其实J48是一个开源的C4.5的Java实现版本(J48 is an open source Java implementation of the C4.5 algorithm),所以J48就是C4.5。 数据分析师培训
然后你可以自定义的选择“Test options”中的一些测试选项,这里我们不做过多说明。然后单击“Start”按钮,Weka就为我们建立了一棵决策树,你可以从“Classifier output”栏目中看到模型训练的一些结果。但是对于决策树而言,你可以觉得文字看起来还不够直观。不要紧,Weka还为你提供了可视化的决策树建模呈现。为此,你需要右键单击刚刚训练好的模型,然后从右键菜单中选择“Visualize tree”,如下图所示。
最后我们得到了一棵与前面例子中相一致的决策树,如下图所示。
在后续的决策树系列文章中,我们将继续深入探讨CART算法等相关话题。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21