在R中,可以使用e1071软件包所提供的各种函数来完成基于支持向量机的数据分析与挖掘任务。请在使用相关函数之前,安装并正确引用e1071包。该包中最重要的一个函数就是用来建立支持向量机模型的svm()函数。我们将结合后面的例子来演示它的用法。
下面这个例子中的数据源于1936年费希尔发表的一篇重要论文。彼时他收集了三种鸢尾花(分别标记为setosa、versicolor和virginica)的花萼和花瓣数据。包括花萼的长度和宽度,以及花瓣的长度和宽度。我们将根据这四个特征来建立支持向量机模型从而实现对三种鸢尾花的分类判别任务。
有关数据可以从datasets软件包中的iris数据集里获取,下面我们演示性地列出了前5行数据。成功载入数据后,易见其中共包含了150个样本(被标记为setosa、versicolor和virginica的样本各50个),以及四个样本特征,分别是Sepal.Length、Sepal.Width、Petal.Length和Petal.Width。
在正式建模之前,我们也可以通过一个图型来初步判定一下数据的分布情况,为此在R中使用如下代码来绘制(仅选择Petal.Length和Petal.Width这两个特征时)数据的划分情况。
[plain] view plain copy
> library(lattice)
> xyplot(Petal.Length ~ Petal.Width, data = iris, groups = Species,
+ auto.key=list(corner=c(1,0)))
上述代码的执行结果如图14-13所示,从中不难发现,标记为setosa的鸢尾花可以很容易地被划分出来。但仅使用Petal.Length和Petal.Width这两个特征时,versicolor和virginica之间尚不是线性可分的。
函数svm()在建立支持向量机分类模型时有两种方式。第一种是根据既定公式建立模型,此时的函数使用格式为
[plain] view plain copy
svm(formula, data= NULL, subset, na.action = na.omit , scale= TRUE)
其中,formula代表的是函数模型的形式,data代表的是在模型中包含的有变量的一组可选格式数据。参数na.action用于指定当样本数据中存在无效的空数据时系统应该进行的处理。默认值na.omit表明程序会忽略那些数据缺失的样本。另外一个可选的赋值是na.fail,它指示系统在遇到空数据时给出一条错误信息。参数scale为一个逻辑向量,指定特征数据是否需要标准化(默认标准化为均值0,方差1)。索引向量subset用于指定那些将被来训练模型的采样数据。
例如,我们已经知道,仅使用Petal.Length和Petal.Width这两个特征时标记为setosa和的鸢尾花versicolor是线性可分的,所以可以用下面的代码来构建SVM模型。
然后我们可以使用下面的代码来对模型进行图形化展示,其执行结果如图14-14所示。
[plain] view plain copy
> plot(model1, subdata, Petal.Length ~ Petal.Width)
在使用第一种格式建立模型时,若使用数据中的全部特征变量作为模型特征变量时,可以简要地使用“Species~.”中的“.”代替全部的特征变量。例如下面的代码就利用了全部四种特征来对三种鸢尾花进行分类。
[plain] view plain copy
> model2 <- svm(Species ~ ., data = iris)
若要显示模型的构建情况,使用summary()函数是一个不错的选择。来看下面这段示例代码及其输出结果。
通过summary函数可以得到关于模型的相关信息。其中,SVM-Type项目说明本模型的类别为C分类器模型;SVM-Kernel项目说明本模型所使用的核函数为高斯内积函数且核函数中参数gamma的取值为0.25;cost项目说明本模型确定的约束违反成本为l。而且我们还可以看到,模型找到了51个支持向量:第一类包含有8个支持向量,第二类包含有22个支持向量,第三类包含21个支持向量。最后一行说明模型中的三个类别分别为setosa、versicolor和virginica。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29数据分析师的能力要求 在当今的数据主导时代,数据分析师的角色变得尤为重要。他们不仅需要具备深厚的技术背景,还需要拥有业务 ...
2024-12-29随着技术的飞速发展与行业的持续变革,不少人心中都存有疑问:到了 2025 年,数据分析师还有前途吗?给你分享一篇阿里P8大佬最近 ...
2024-12-29如何构建数据分析整体框架? 要让数据分析发挥其最大效能,建立一个清晰、完善的整体框架至关重要。今天,就让我们一同深入探讨 ...
2024-12-27AI来了,数分人也可以很省力,今天给大家介绍7个AI+数据分析工具,建议收藏。 01酷表 EXCEL 网址:https://chatexcel.com/ 这是 ...
2024-12-26一个好的数据分析模型不仅能使分析具备条理性和逻辑性,而且还更具备结构化和体系化,并保证分析结果的有效性和准确性。好的数据 ...
2024-12-26当下,AI 的发展堪称狂飙猛进。从 ChatGPT 横空出世到各种大语言模型(LLM)接连上线,似乎每个人的朋友圈都在讨论 AI 会不会“ ...
2024-12-26数据分析师这个职业已经成为了职场中的“香饽饽”,无论是互联网公司还是传统行业,都离不开数据支持。想成为一名优秀的数据分析 ...
2024-12-26在数据驱动决策成为商业常态的今天,数据分析师这一职业正迎来前所未有的机遇与挑战。很多希望转行或初入职场的人士不禁询问:数 ...
2024-12-25