浅谈PDM中的大数据应用
随着国内的制造业发展,逐步从“中国制造”向“中国创造”转变,新产品的研制和开发越来越多的被各行各业的企事业单位所重视。ERP在生产制造环节发挥更大的作用,需要PDM在企业研制设计阶段中发挥更加重要的作用。同时,越来越多的人也注意到,随着国内PDM行业的蓬勃发展,国内的一些自主创新企业和一些PDM软件商或代理商逐步摸索出若干条针对中国国情的PDM应用模式和应用路数。但是,PDM软件的应用效果仍然未达到人们应有的预期,应用的范围,实施的流程化和维护的专业化和应用的延展性方面,还是存在相当大的误区,实际的应用情况仍然停留在文档、图档、模型的流程化管理,可视化装配,树状展示等过程管理层面,对数据的有效利用率仍然偏低,仍然延续着纸质受控归档的“模拟手工”式的电子化管理。
“大数据”属于新千年中产生的一个新事物,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。PDM的存量数据就非常符合大数据的数据定义。大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。PDM系统中存量数据的意义,更应该属于大数据思维下的数据增值。
本文从PDM理论和应用,大数据的理论与实践,以及PDM应用下的大数据应用等几个方面,详细阐述了PDM应用在大数据思路下的数据增值可能。
一、PDM理论与应用介绍
PDM以软件为基础,是一门管理所有与产品相关的信息(包括电子文档、数字化文件、数据库记录等)和所有与产品相关的过程(包括工作流程和更改流程)的技术。它提供产品全生命周期的信息管理,并可在企业范围内为产品设计和制造建立一个并行化的协作环境。
PDM的基本原理是,在逻辑上将各个CAX信息化孤岛集成起来,利用计算机系统控制整个产品的开发设计过程,通过逐步建立虚拟的产品模型,最终形成完整的产品描述、生产过程描述以及生产过程控制数据。技术信息系统和管理信息系统的有机集成,构成了支持整个产品形成过程的信息系统,同时也建立了CIMS的技术基础。通过建立虚拟的产品模型,PDM系统可以有效、实时、完整的控制从产品规划到产品报废处理的整个产品生命周期中的各种复杂的数字化信息。
产品数据管理PDM(ProductDataManagement)技术很难有一个准确的定义加以描述。1995年初,主要致力于研究PDM技术和相关计算机集成技术的国际权威咨询公司CIMdata给PDM作了一个概括性的定义:“PDM是一门用来管理所有与产品相关的信息和所有与产品相关的过程的技术”。这个定义从广义的角度解释了PDM技术。但就现阶段PDM的发展情况而言,可以给出一个较为具体的定义:“PDM技术以软件技术为基础,是一门管理所有与产品相关的信息(包括电子文档、数字化文档数据库记录等)和所有与产品相关的过程(包括审批/发放、工程更改、一般流程、配置管理等)的技术。提供产品全生命周期的信息管理,并可以在企业范围内为产品设计与制造建立一个并行化的协作环境。”
制造过程数据文档管理PDM 为管理企业的生产资源和制造过程数据而设计,能有效的组织工艺过程卡片、零件蓝图、三维数模、刀具清单、质量文件和数控程序等生产作业文档,实现企业车间现场无纸化生产。
许多企业已经意识到,实现信息的有序管理将成为在未来的竞争中保持领先的关键因素。在这一背景下产生一项新的管理思想和技术PDM,即以软件技术为基础,以产品为核心,实现对产品相关的数据、过程、资源一体化集成管理的技术。PDM明确定位为面向制造企业,以产品为管理的核心,以数据、过程和资源为管理信息的三大要素。PDM进行信息管理的两条主线是静态的产品结构和动态的产品设计流程,所有的信息组织和资源管理都是围绕产品设计展开的,这也是PDM系统有别于其它的信息管理系统,如企业信息管理系统(MIS)、制造资源计划(MRPⅡ)、项目管理系统(PM)、企业资源计划(ERP)的关键所在。
二、 大数据理论和实践
对于“大数据”(Big data)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘,但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。
随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。《著云台》的分析师团队认为,大数据(Big data)通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapReduce一样的框架来向数十、数百或甚至数千的电脑分配工作。大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘电网、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
大数据分析相比于传统的数据仓库应用,具有数据量大、查询分析复杂等特点。《计算机学报》刊登的“架构大数据:挑战、现状与展望”一文列举了大数据分析平台需要具备的几个重要特性,对当前的主流实现平台——并行数据库、MapReduce及基于两者的混合架构进行了分析归纳,指出了各自的优势及不足,同时也对各个方向的研究现状及作者在大数据分析方面的努力进行了介绍,对未来研究做了展望。
大数据的4个“V”,或者说特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。前文提到的网络日志、视频、图片、地理位置信息等等。第三,处理速度快,1秒定律,可从各种类型的数据中快速获得高价值的信息,这一点也是和传统的数据挖掘技术有着本质的不同。第四,只要合理利用数据并对其进行正确、准确的分析,将会带来很高的价值回报。业界将其归纳为4个“V”——Volume(大量)、Variety(多样)、Velocity(高速)、Value(价值)。
从某种程度上说,大数据是数据分析的前沿技术。简言之,从各种各样类型的数据中,快速获得有价值信息的能力,就是大数据技术。明白这一点至关重要,也正是这一点促使该技术具备走向众多企业的潜力。
三、大数据在PDM应用的意义
随着计算机、通讯、电子等信息技术的飞速发展,信息和知识在企业发展中的关键地位得到越来越多的关注。企业的信息和知识是其生存的关键。在这个全新的知识时代,只有那些成功地收集、分析、掌握信息和知识并根据相关信息或知识决策的企业才能真正利于不败之地。
将数据大数据技术应用到PDM系统中,提升PDM系统的知识发现能力,其主要意义在于一下两个方面:
1.理论上的意义
将大数据技术应用与PDM系统对于丰富PDM和数据挖掘技术有着重大的意义,它将会极大地推动PDM系统知识发现和积累功能、数据挖掘理论应用的快速发展,并且在企业产品数据的充分开发和利用,以及企业知识管理等诸多方面也有一定的借鉴作用。由于PDM系统在理论上可以将不同的软件解决方案集成在一起,形成一种可运行的整体解决方案,因此,将大数据挖掘技术成功地应用到PDM系统就成为可能。
2.生产实际上的意义
随着网络技术、数据库技术和面向对象技术的发展,PDM技术在全球范围内得到了广泛的应用,其应用领域已经由原来的机械制造扩展到包括机械、电子、汽车、航空、航天以及非制造业等十分广泛的领域。
大数据与PDM系统的结合,使得数据库中的大量数据可以得到充分开发和利用,获得可用于企业分析决策的信息和知识,例如各类数据对象的重要性、零部件更改频率的统计、员工完成计划任务的进度、完成计划任务的预测时间、员工进行产品设计的熟练程度等等。同时,利用PDM系统的产品数据保护机制,有效地保障了数据库中原始数据的安全性。通过对被发现信息和知识的分析利用,可以有效地提高产品数据的利用率以及员工的工作效率,从而促进企业经济效益的提升。
四、PDM系统中大数据的应用
基于PDM的大数据思路继承了PDM系统已有的体系结构和功能,从而能够有效地解决传统PDM系统的一些问题,主要体现在如下几个方面:
1.由于PDM系统将数据对象存储于数据库内,面向对象的管理层封装了数据库中的原始数据,并且PDM应用程序都构建于面向对象的管理层之上,从而,保障了数据库中数据的安全性。同样地,将大数据系统架构在面向对象的管理层上,将会有效地保障原始数据的安全性,消除了大数据工具对数据库造成的安全隐患。
2.PDM系统能够有效地对电子文档进行有效地管理,同样地,对于在大数据进行数据挖掘过程中产生的原始数据以及数据结果都能够进行有效的管理,因此避免了知识的浪费和重复的大数据检索过程。通过PDM系统对知识管理的辅助作用,为企业的知识共享提供了统一的平台。
3.通过大数据原型系统与PDM系统的集成应用,有效地解决了大数据系统支持的有限性和集成的单一性,扩展了大数据技术应用的外延。
所以,在PDM系统环境下,大数据如果能充分发挥其优势,以及PDM系统能有效地实现其知识发现和管理功能,那么PDM系统中大数据理念的应用则对PDM系统的深化应用起到更为重要的作用。
五、结论
PDM作为产品数据管理软件,大数据作为互联网新兴概念,归根结底,它们还是一个工具,它不具有任何主观能动性,最关键的因素还是使用软件的“人”,包括使用企业、软件方和实施方,其中又以使用企业最为重要。企业需要自身提出相关的数据管理维度和方向,通过大数据手段在PDM系统中检索和挖掘出符合企业自身管理的提取模型和数据结果。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16