简单易学的机器学习算法—基于密度的聚类算法DBSCAN
一、基于密度的聚类算法的概述
我想了解下基于密度的聚类算法,熟悉下基于密度的聚类算法与基于距离的聚类算法,如K-Means算法之间的区别。
基于密度的聚类算法主要的目标是寻找被低密度区域分离的高密度区域。与基于距离的聚类算法不同的是,基于距离的聚类算法的聚类结果是球状的簇,而基于密度的聚类算法可以发现任意形状的聚类,这对于带有噪音点的数据起着重要的作用。
二、DBSCAN算法的原理
1、基本概念
DBSCAN(Density-Based Spatial Clustering of Application with Noise)是一种典型的基于密度的聚类算法,在DBSCAN算法中将数据点分为一下三类:
核心点。在半径Eps内含有超过MinPts数目的点
边界点。在半径Eps内点的数量小于MinPts,但是落在核心点的邻域内
噪音点。既不是核心点也不是边界点的点
在这里有两个量,一个是半径Eps,另一个是指定的数目MinPts。
一些其他的概念
Eps邻域。简单来讲就是与点p的距离小于等于Eps的所有的点的集合,可以表示为。
直接密度可达。如果p在核心对象q的Eps邻域内,则称对象p从对象q出发是直接密度可达的。
密度可达。对于对象链:,是从关于Eps和MinPts直接密度可达的,则对象是从对象关于Eps和MinPts密度可达的。
2、算法流程
(流程)
三、实验仿真
在实验中使用了两个测试数据集,数据集的原始图像如下:
(数据集1)
(数据集2)
数据集1相对比较简单。显然我们可以发现数据集1共有两个类,数据集2有四个类,下面我们通过DBSCAN算法实现数据点的聚类:
MATLAB代码
主程序
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% DBSCAN
clear all;
clc;
%% 导入数据集
% data = load('testData.txt');
data = load('testData_2.txt');
% 定义参数Eps和MinPts
MinPts = 5;
Eps = epsilon(data, MinPts);
[m,n] = size(data);%得到数据的大小
x = [(1:m)' data];
[m,n] = size(x);%重新计算数据集的大小
types = zeros(1,m);%用于区分核心点1,边界点0和噪音点-1
dealed = zeros(m,1);%用于判断该点是否处理过,0表示未处理过
dis = calDistance(x(:,2:n));
number = 1;%用于标记类
%% 对每一个点进行处理
for i = 1:m
%找到未处理的点
if dealed(i) == 0
xTemp = x(i,:);
D = dis(i,:);%取得第i个点到其他所有点的距离
ind = find(D<=Eps);%找到半径Eps内的所有点
%% 区分点的类型
%边界点
if length(ind) > 1 && length(ind) < MinPts+1
types(i) = 0;
class(i) = 0;
end
%噪音点
if length(ind) == 1
types(i) = -1;
class(i) = -1;
dealed(i) = 1;
end
%核心点(此处是关键步骤)
if length(ind) >= MinPts+1
types(xTemp(1,1)) = 1;
class(ind) = number;
% 判断核心点是否密度可达
while ~isempty(ind)
yTemp = x(ind(1),:);
dealed(ind(1)) = 1;
ind(1) = [];
D = dis(yTemp(1,1),:);%找到与ind(1)之间的距离
ind_1 = find(D<=Eps);
if length(ind_1)>1%处理非噪音点
class(ind_1) = number;
if length(ind_1) >= MinPts+1
types(yTemp(1,1)) = 1;
else
types(yTemp(1,1)) = 0;
end
for j=1:length(ind_1)
if dealed(ind_1(j)) == 0
dealed(ind_1(j)) = 1;
ind=[ind ind_1(j)];
class(ind_1(j))=number;
end
end
end
end
number = number + 1;
end
end
end
% 最后处理所有未分类的点为噪音点
ind_2 = find(class==0);
class(ind_2) = -1;
types(ind_2) = -1;
%% 画出最终的聚类图
hold on
for i = 1:m
if class(i) == -1
plot(data(i,1),data(i,2),'.r');
elseif class(i) == 1
if types(i) == 1
plot(data(i,1),data(i,2),'+b');
else
plot(data(i,1),data(i,2),'.b');
end
elseif class(i) == 2
if types(i) == 1
plot(data(i,1),data(i,2),'+g');
else
plot(data(i,1),data(i,2),'.g');
end
elseif class(i) == 3
if types(i) == 1
plot(data(i,1),data(i,2),'+c');
else
plot(data(i,1),data(i,2),'.c');
end
else
if types(i) == 1
plot(data(i,1),data(i,2),'+k');
else
plot(data(i,1),data(i,2),'.k');
end
end
end
hold off
距离计算函数
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% 计算矩阵中点与点之间的距离
function [ dis ] = calDistance( x )
[m,n] = size(x);
dis = zeros(m,m);
for i = 1:m
for j = i:m
%计算点i和点j之间的欧式距离
tmp =0;
for k = 1:n
tmp = tmp+(x(i,k)-x(j,k)).^2;
end
dis(i,j) = sqrt(tmp);
dis(j,i) = dis(i,j);
end
end
end
epsilon函数
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [Eps]=epsilon(x,k)
% Function: [Eps]=epsilon(x,k)
%
% Aim:
% Analytical way of estimating neighborhood radius for DBSCAN
%
% Input:
% x - data matrix (m,n); m-objects, n-variables
% k - number of objects in a neighborhood of an object
% (minimal number of objects considered as a cluster)
[m,n]=size(x);
Eps=((prod(max(x)-min(x))*k*gamma(.5*n+1))/(m*sqrt(pi.^n))).^(1/n);
最终的结果
(数据集1的聚类结果)
(数据集2的聚类结果)
在上面的结果中,红色的点代表的是噪音点,点代表的是边界点,十字代表的是核心点。不同的颜色代表着不同的类。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29数据分析师的能力要求 在当今的数据主导时代,数据分析师的角色变得尤为重要。他们不仅需要具备深厚的技术背景,还需要拥有业务 ...
2024-12-29