看三大运营商如何将大数据的“富矿”变“钻石
如今我们处在一个无处不数据的时代,坐拥大数据这座富矿,国内无论是互联网企业还是运营商都在紧锣密鼓的建设大数据平台,企图将这座宝矿开发成为熠熠生辉的“钻石”。
目前,国内三大运营商迎接大数据时代的步伐和规划各自不同,中国电信的大数据平台已经扩展到31个省,基础平台建设基本完成;中国联通虽然起步晚一些,但是其大数据产品体系已经发展成为六大产品种类;相对于中国电信和中国联通的成熟,中国移动的数据中心资源略显不足,但是需求量不断递增,也在不断努力布局中。
中国电信:大数据平台扩展到31个省 基础平台建设基本完成
中国电信所有的大数据都是在云平台和云设施之上搭建的,如今其大数据平台建设从原来的5个省现在扩展到31个省,数据的种类从开始的几类主要的数据扩展到十几类,实效性是原来一周到现在小时的延时。
中国电信云计算分公司大数据事业部首席数据分析师张宇中表示:“中国电信的大数据平台跟其它合作伙伴的模式不一样,中国电信主要是做节约化运营,将数据的汇聚、接入、存储、加工、输出整合在一起,这样前端的响应可以快速的传递到客户中去,并且可以持续的循环。同时,中国电信的平台开发还做了具体功能区分。”
目前中国电信已经完成了大数据基础平台的建设,正在继续完善行业的应用。依托云网融合,中国电信的大数据开放平台一直拥有强大的资源,中国电信有八大资源基地,还有内蒙和贵州两大数据中心,并且很多区域下沉的边界。
2015年11月28日,中国电信正式发布“天翼大数据”品牌,并推出精准营销、风险防控、区域洞察、咨询报告四类数据型产品和大数据云平台型产品,重点服务于旅游、金融、广告、政府、交通等行业。这是中国电信运营商第一个大数据业务品牌。
据了解,中国电信推出的4+1产品模块,拥有15个子项。其中有面向个人拥护推出的风控的和精准营销产品;还有一部分是输出具体数据,形成相关报告;此外,中国电信还开发了PAAS的平台对价值链的某一方面具有专业特色的公司能够利用大数据平台做它所擅长的事情。可以说,中国电信通过多种手段为产业链打造了一个比较安全可靠的大数据平台。
此外,中国电信还和其它100家企业共同发起成立BDU中国企业大数据联盟,期望能够与产业链共同推进大数据生态的建设。
中国联通:大数据产品体系发展为六大类
中国联通从2013年开始发展大数据业务,如今其大数据产品体系已经发展成为六大产品种类。
据了解,这六大产品种类分别是:一征信产品,例如大数据最大的应用是在金融行业,金融行业需求电信运营商所拥有的大量用户的真实性数据;二沃指数,分析包括市场洞察和行业指数两个方面,行业指数涉及到金融、交通、旅游、APP,以及各类的各个垂直行业分析的指数;三精准营销产品,中国联通有很多用户资源和渠道,在保护用户隐私的前提下,可以做到针对不同的场景和不同的用户,进行内部和外部的精准营销;四用户标签;五能力开放平台;六智慧足迹。
特别需要指出的是去年底中国联通在第二届世界互联网大会上,首次发布了“沃指数”大数据产品体系。该产品体系以中国联通4亿用户数据为基础,具备海量、实时的数据处理能力,通过与政府、行业权威机构的数据进行整合、提炼、分析和挖掘,具有真实、全量、安全、实时、公正的特点。
据介绍,“沃指数”涵盖了3000余个用户标签,能够轻松识别3.8亿条URL、6万个互联网产品、约3000个手机品牌、8.2万个终端型号,据此可助力政府在城市规划、公共服务、交通出行、旅游监控、抢险救灾等方面提供决策依据;帮助企业在商业选址、广告投放、信用控制、产品设计等方面提供分析报告及经营决策指导;为公众提供交通出行、旅游选择、消费指南等生活服务。
目前中国联通对移动网和固网用户的数据采集、数据存储、分析和挖掘,形成了以下能力:包括9个大类的用户的标签,涉及到各个行业,各个类别,识别3.8亿条URL的特征,可以识别6万左右个互联网产品,以及可以对3000个手机品牌,以及8.2万个终端型号进行识别。
中国移动:数据中心资源不足 分两级布局
数据中心资源不足一直以来是中国移动面临的问题,尤其是随着4G用户近年来的高速发展,数据中心需求量不断递增。
据了解,2014年,中国移动数据中心全网机柜超过了43700架,预计2016年将突破10万架。
此外,日前中国移动启动2016-2017年度数据中心交换机集中采购工作,预计数据中心交换机(接入交换机)采购3697套,数据中心交换机(出口交换机)采购731套。
近日中国移动计划建设部基建管理处处长舒建军在公开场合谈及中国移动数据中心规划,“中国移动的数据中心在布局上分两级布局:一级是为全网服务的总部主管数据中心;另一级是省公司主管数据中心。总部主管数据中心主要部署在内蒙、哈尔滨这两个地方,主要服务于全网的集中化的自用系统,兼顾地域不敏感的IDC客户需求、公众服务云。”
另外,在选址方面,现在中国移动设计的数据中心,PUE在北方区域达到1.32,在南方甚至在海南、广东一带达到1.4。这些技术在呼和浩特、哈尔滨包括国际信息港、南方基地等数据中心都有应用,而且这四个数据中心都是为全网服务的数据中心。
总之,中国移动建设数据中心的目标是安全、高效、低成本、绿色,要努力实现IT、土建、机电的最佳匹配。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13