怎么在spss上做层次回归分析
在英文文献中,我们经常会见到hierarchical regression(层次回归分析).我们知道回归分析中最常见的就是进入(enter)法,是将所有的预测变量全部放入independents,不涉及变量的筛选,为默认的选项。而前进法或者向后法是按照一定的规则逐步加入变量,由系统自动进行,比如预测变量有4个abcd,首先分别拟合4个变量的4个简单模型,假如均没有显著,则程序终止。
假如均有显著,然后将其中P值最小的变量(假如为a)首先纳入到模型,分别有3个模型,a+b,a+c,a+d;假如bcd均没有显著,则程序终止。
假如bcd有统计学意义,则选择具有统计学意义p值最小的变量进入模型(假如为b)则分别有2个模型,a+b+c,a+b+d.如此反复进行,直至模型外的自变量均无统计学意义,模型内的自变量均有统计学意义
stepwise(逐步进入法)与前进法的主要区别是,在模型中假如变量之后不仅对新加入的变量进行检验,同时也对新模型中的原始变量进行检验,例如上例,a+b,a+c,a+d同时也对a进行检验,如果无统计学意义,也将a剔除出模型。
那么层次回归其实是建立在之前的回归分析方法之上的,与上述的统计方法不是并列关系。层次回归可以使用所有的回归方法,只是相当于对每层的变量进行单独的分析,找出差异性。其基本思想是将感兴趣的变量放在最后一步进入模型,以考察在排除了其他变量的贡献的情况下,该变量对回归方程的贡献。如果变量仍然有明显的贡献,那么我们可以做出该变量确实具有其他变量所不能替代的独特作用的结论。这种方法主要用于,当自变量之间有较高的相关,其中否一个自变量的独特贡献难以确定的情况。
应用举例:
本例考察不同种类土地使用面积与固体排放量之间的关系,自变量有indust,metals,trucks,retail,restrnts.我们想分析resrnts对固体排放量的单独贡献。那么我们可以选择将resrnts放入最后一层。
第一步将另外的四个变量放入block1中
第二步,点击next,放入resrnts变量,作为第二层。
第三步:点击右边第一个按钮statistic,主要勾选第二个R方的改变值,然后点击continue,OK
结果如下
第二层的变量较之于第一层变量多出的就是我们要考虑的变量,我们可以看到R方的改变值为0.152,方差分析显著,说明排除其他四个变量的影响,单独由宾馆、餐饮业用地所解释的差异为15.2%,具有统计学意义。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21