岭回归分析及其SPSS实现方法
近日有医院的小伙伴问起岭回归分析的SPSS操作,在此与大家一起复习一下。
岭回归分析(RidgeRegression)是一种改良的最小二乘估计方法,它是用于解决在线性回归分析中自变量存在共线性的问题。什么?共线性是什么?共线性就是指自变量之间存在一种完全或良好的线性关系,进而导致自变量相关矩阵之行列式近似为0,导致最小二乘估计失效。此时统计学家就引入了k个单位阵(I),使得回归系数可估计。设么?没看懂,那就算了。
知道岭回归分析就是用来解决多重共线性的问题,就够了。在医学科研的实际工作中,往往不需要创造算法,会用算法就行。当然如果你有心研究其原理,那更是极好的。
下面我们还是通过实例来学习岭回归分析的应用条件和SPSS实习方法吧。用SPSS自带的例子(来自SPSS 20.0版的示例数据库,其他版本的就别找了),某研究者想了解B超下胎儿的身长、头围、体重与胎儿受精周数之间的关系,即B超测得上述参数之后,用它们来推测胎儿的受精时长(周数)。我们很容易想到用多重线性回归来解决,以胎儿周数为因变量,以身长、头围和体重为因变量,做回归之后我们发现,结果如下:
不会吧?!头围尽然与周龄成负相关,开玩笑啊。这个方程肯定是有问题,细心的读者也已经发现方差膨胀因子(VIF)大到200多了(VIF是用来判断自变量共线性的一种方法,如果大于10即认为存在较为严重的共线性)。现在该怎么办?岭回归该发挥作用了。
岭回归分析在SPSS中没有可供点击的对话框,我们需要写一段超级简单的语法来调用SPSS的宏。SPSS公司可能也觉得羞愧,没有提供人机交互的对话框,于是他们提供了一段宏程序,存储路径为“你的SPSS安装目录\SPSS\Statistics\22\Samples\Simplified Chinese\Ridge regression.sps”。
我们在做岭回归分析时,只需要调用它就行,调用语法如下(*后面是注释):
什么?你调用不了?哦,那是因为你没有SPSS目录下的修改权限。什么是修改权限?这是电脑问题,Windows为了保护其程序文件,一般默认不给用户修改权限,需要用户自己去改,至于怎么改自己问百度吧。
进行上述运算后,你会得到如下几个结果:1、不同K值下自变量的标准化回归系数;2、岭轨图,3、R方的变化图。
如何选择结果呢?我们需要选择一定K值下的标准化回归系数,选择的原则是各个自变量的标准化回归系数趋于稳定时的最小K值。因为K值越小我们引入的单位矩阵就少,偏差就小。有同学说上图看不起,那么我们把岭迹图放大如下,就可以看出k大约在0.05时,各个自变量的标准化回归系数就趋于稳定了。
有了上述的结果,我们就获得了岭回归的各个自变量的标准化回归系数,也算是做完了。但是有人又问了,我们能不能获得非标准的偏回归系数、t值和p值呢?当然是可以的,但是SPSS原始的宏不提供p值的计算,所以我们需要在SPSS的宏中加入这一句话“. computeppp=2*(1-tcdf(abs(ratio),n-nv-1)).”,这句话就是计算p值的。同时我们对print结果略作修改。这句话加在下图的位置上:
修改完宏之后,再修改上述调用语句,将其中的k改为等于0.05,SPSS就会做k=0.05时的岭回归分析,并给出各个自变量的检验结果,结果如下:
至此完整的岭回归分析就算做完了,各个自变量的标准化回归系数合理多了吧。什么?你还是没学会。哎,复习一下SPSS的语法运算吧,我只能帮你到这儿了。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21