大数据市场持续升温,创业者需知道数据
在互联网及移动互联网时代,中国创业潮一直以来都风生水起,一大批移动互联网企业赴美上市。进入大数据时代,数据不仅为我们的生活工作带来了诸多便利,更是将创业热潮推向了历史高峰。
3月22日,由上海大数据联盟、上海大数据产业基地和华院数据联合主办、数据猿协办的“2017大数据人工智能产业发展与创新应用”论坛上,为挖掘优秀项目及人才,推动科技的创新应用,主办方正式启动了“中国大数据人工智能创新创业大赛”。
参赛团队不仅可以获得科技金融赛题提供的股市行情数据、数据库、舆情信息等数据资源,还会面临全新的赛题挑战,即国内首推K线技术面视觉分析及图文消息面市场影响评估赛题。同时,主办方还联合羽时资产特设2亿专项AI基金,寻找创业独角兽,锁定众多技术大咖,届时一定会吸引大量创新创业者参赛。
在这个“大众创业、万众创新”的时代,尽管创业是一件极具风险、成功率又极低的事情,却仍然吸引着众多年轻人前仆后继加入创业大军。可是还是有很多人都只是“为了创业而创业”。那么,拥有创业热情又不乏计算机技术的年轻人们,该如何找到大数据人工智能的创业入口?如何选对创业方向呢?在回答问题之前,创业者们不妨先来了解一下大数据产业的创投市场。
创业先看投资。创业者在进入任何一个新兴行业之时,都需要有勇气和远见,其“远见”就表现为要清楚知道市场中“钱”的走向,只有清楚投资人把钱投向了哪里,才有机会抓住产业风口,占据市场.
在此次论坛上,数据猿创始人牟蕾指出,2016年,创投圈的“资本寒冬”之声不绝于耳,时不时传出创业项目被否决的消息。投资机构变得更加谨慎,创业者融资周期不断延长。创投圈发生了什么?大数据行业的创业创新是否还有机会?又有多少机会?
对此,牟蕾对2012年-2016年大数据行业投融资情况进行了复盘。数据显示,在2014年,我国大数据市场规模为97亿元,2015、2016年间增长率均高于全球数值,预计2018年,我国大数据市场规模有望超过500亿。与此同时,大数据产业显现出正在向成熟期过渡的发展特点,数据分析、数据应用项目开始受到资本热捧。
具体而言,2012-2016五年间,大数据领域发生的投融资事件超过1600起,透露金额的有1300余起,总金额达1200多亿;其中A轮事件占比40.4%,天使轮38.2%,产业大部分项目处于发展期,部分成熟项目已进入PE阶段。其中,2016年,融资额同比增长率达189.7%,不过融资频次下降,单笔额度过亿,但产业向成熟期发展越发明显。
牟蕾强调,从细分领域投融资趋势看,五年来,数据应用产业内的相关融资事件发生了673起,被披露项目的总金额达483亿,其二级产业中广告营销类融资事件位居首位;而数据分析产业相关融资事件450起,总金额471亿,仅次数据应用产业,其二级产业中分析平台类融资事件占据榜首。从资金走向看,牟蕾还指出,被大资金追棒的项目不外乎两个方向:一是通用技术型项目,这种技术不分行业,比如与人工智能相关的机器学习等底层架构技术;二是行业间的跨界融合,尤其是传统产业与大数据人工智能技术的结合。
此外,记者了解到,此次论坛上启动的“中国大数据人工智能创新创业大赛”,将聚焦于智慧医疗和科技金融两大热门领域。这两大领域与牟蕾的大数据投融资趋势分析结果如出一辙——“目前,金融和人工智能是大数据应用最热的行业,医疗健康和互娱次之”。
如今,大数据产业的高速发展已经渗透到每个行业和职能领域,成为了重要的生产因素;人工智能也已经应用于语音识别、图像处理器、计算机视觉、机器人等多个领域,甚至击败了围棋九段李世石,一系列成绩的背后,都是海量数据的积累与学习。各行业人士对数据的挖掘与应用,预示着新一波创业浪潮即将到来。
此外,牟蕾还向现场嘉宾展示了2012-2016年大数据产业投融资TOP榜。其中,TOP5的投资机构平均投入金额均在30亿元以上;融资大事件的发生地冠、亚军之位是北京(747次)和上海(275次),除苏州、成都仅在2012年上榜之外,此后,深圳、广州和杭州融资愈加活跃。而众所周知,北上广深一直是创业者们的集中营,所以这些城市将一如既往是大数据产业创新的发源地。
创业者们,如果想要选择好的产业风口,创投分析则是对一个产业发展的前置预判。如果一个新兴产业中的很多应用度尚未大面积展开,那么这个行业真正的春天其实是将掌握在众多有“远见”的创业者手中!
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21