R语言数据集合并、数据增减、不等长合并
数据选取与简单操作:
一、数据合并
1、merge()函数
最常用merge()函数,但是这个函数使用时候这两种情况需要注意:
1、merge(a,b),纯粹地把两个数据集合在一起,没有沟通a、b数据集的by,这样出现的数据很多,相当于a*b条数据;
2、merge函数是匹配到a,b数据集的并,都有的才匹配出来,如果a、b数据集ID不同,要用all=T(下面有all用法的代码)。
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#横向合并
ID<-c(1,2,3,4)
name<-c("Jim","Tony","Lisa","Tom")
score<-c(89,22,78,78)
student1<-data.frame(ID,name)
student2<-data.frame(ID,score)
total_student<-merge(student1,student2,by="ID") #或者rbind()
total_student
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#纵向合并
ID<-c(1,2,3)
name<-c("Jame","Kevin","Sunny")
student1<-data.frame(ID,name)
ID<-c(4,5,6)
name<-c("Sun","Frame","Eric")
student2<-data.frame(ID,name)
total<-cbind(student1,student2)
total
merge的all用法
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
> id=c("1","2","3")
> M=c("7","2","3")
> ink2=data.frame(id,M)
>
> merge(ink1,ink2,by="id",all=T) #所有数据列都放进来,空缺的补值为NA
id R M
1 1 9 7
2 2 7 2
3 4 9 <NA>
4 3 <NA> 3
> merge(ink1,ink2,by="id",all=F) #默认,只取两者的共有的部分
id R M
1 1 9 7
2 2 7 2
其中,all=T代表全连接,all.x=T代表左联结;all.y=T代表右连接
2、dplyr包
dplyr包的数据合并,
一般用left_join(x,y,by="name") 以x为主,y中匹配到的都放进来, 但,y中没有的则不放过来。
需要这个x数据集是全集,比较大。
3、paste函数
生成一长串字符向量。
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
paste(c("X","Y"),1:10,sep="") #"X”,"Y"是长度为2的字符向量,1:10 长度为10的向量。命令是让这两个向量粘合在一起生成新的字符串向量,粘合后的新字符之间没有间隔。
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#—————————paste中seq与collapse区别————————————————————
a = c(1, 2, 3, 4, 5)
names(a) = c('m', 'n','o', 'p', 'q')
# 主要是区分使用sep和collapse
b = paste(a, names(a), sep = "/") #不同向量合并在一起,但是还是各自向量
c = paste(b, collapse = ",") #不同向量合并在一起,但是变成一个向量
mode(b) #变量类型
mode(c)
4、cbind和rbind函数
cbind()和rbind(),cbind()按照纵向方向,或者说按列的方式将矩阵连接到一起。
rbind()按照横向的方向,或者说按行的方式将矩阵连接到一起
rbind/cbind对数据合并的要求比较严格:合并的变量名必须一致;数据等长;指标顺序必须一致。相比来说,其他一些方法要好一些,有dplyr,sqldf中的union
5、sqldf包
利用SQL语句来写,进行数据合并,适合数据库熟悉的人,可参考:
R语言︱ 数据库SQL-R连接与SQL语句执行(RODBC、sqldf包)
二、数据增减
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
x=x[,-1] #这个就代表,删除了x数据集中第一列数据
或用dplyr包中的mutate函数
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
a=mutate(Hdma_dat,dou=2*survived,dou4=4*survived)
Hdma_dat$dou=a$dou
Hdma_dat$dou4=a$dou4 #两个新序列,加入到Hdma数据集汇总
筛选变量服从某值的子集
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
subset(airquality, Temp > 80, select = c(Ozone, Temp))
subset(airquality, Day == 1, select = -Temp)
subset(airquality, select = Ozone:Wind)
三、数据纵横加总
R使用rowSums函数对行求和,使用colSums函数对列求和。
四、不等长合并
1、plyr包
rbind.fill函数可以很好将数据进行合并,并且补齐没有匹配到的缺失值为NA。
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#————————————————————————————不等长合并
#如何解决合并时数据不等长问题——两种方法:do.call函数以及rbind.fill函数(plyr包)
#rbind.fill函数只能合并数据框格式
#do.call函数在数据框中执行函数(函数,数据列)
library("plyr") #加载获取rbind.fill函数
#第一种方法
list1<-list()
list1[[1]]=data.frame(t(data.frame(Job_Pwordseg.ct[1])))
list1[[2]]=data.frame(t(data.frame(Job_Pwordseg.ct[2])))
do.call(rbind.fill,list1)
#第二种方法
u=rbind.fill(data.frame(t(data.frame(Job_Pwordseg.ct[1]))),data.frame(t(data.frame(Job_Pwordseg.ct[2]))))
核心函数是plyr包中的rbind.fill函数(合并的数据,必须是data.frame),do.call可以用来批量执行。(do.call用法)
关于do.call其他用法(R语言 函数do.call()使用 )
有一个list,想把里面的所有元素相加求和。发现了两个很有意思的函数
list <- list(matrix(1:25, ncol = 5), matrix(4:28, ncol = 5), matrix(21:45, ncol=5))
list.sum<-do.call(sum,list)
list.sum<-do.call(cbind,list)
do.call() 是告诉list一个函数,然后list里的所有元素来执行这个函数。
2、dplyr包
dplyr::bind_rows()
[html] view plain copy
print?在CODE上查看代码片派生到我的代码片
mpg cyl hp drat wt qsec vs am gear carb disp
(dbl) (dbl) (dbl) (dbl) (dbl) (dbl) (dbl) (dbl) (dbl) (dbl) (dbl)
1 21.0 6 110 3.90 2.620 16.46 0 1 4 4 NA
2 21.0 6 110 3.90 2.875 17.02 0 1 4 4 NA
3 22.8 4 93 3.85 2.320 18.61 1 1 4 1 NA
4 21.4 6 110 3.08 3.215 19.44 1 0 3 1 NA
5 17.8 6 123 3.92 3.440 18.90 1 0 4 4 167.6
6 16.4 8 180 3.07 4.070 17.40 0 0 3 3 275.8
7 17.3 8 180 3.07 3.730 17.60 0 0 3 3 275.8
8 15.2 8 180 3.07 3.780 18.00 0 0 3 3 275.8
效果是,不匹配到的放在最后,且等于NA NA NA NA
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29数据分析师的能力要求 在当今的数据主导时代,数据分析师的角色变得尤为重要。他们不仅需要具备深厚的技术背景,还需要拥有业务 ...
2024-12-29随着技术的飞速发展与行业的持续变革,不少人心中都存有疑问:到了 2025 年,数据分析师还有前途吗?给你分享一篇阿里P8大佬最近 ...
2024-12-29