从三大行业看大数据应用的三重境界:数据、分析、成果
各行各业在大数据的应用上可以说是已经渐入佳境,资产管理、运营优化、风险管理等都已经有数据分析参与其中,当然这个过程最重要的还是从业务场景出发让数据真正产生价值。
Teradata把企业数据分析分为四个重要领域——客户体验、多元化数据分析、异构数据整合、海量的业务规模。做好这些也就可以实现大数据应用的三重境界:“数据、分析、成果”。
但在各种因素的影响下,企业在数据应用的过程中也会遇到三大挑战:一、业务层面,在业务场景中分析改进;二、人才层面,人才资源压力是每一个企业都面临的问题;三、架构层面,需要考虑架构的高性能、敏捷性、可扩展性以及成本等因素。
Teradata则可以提供业务分析解决方案、生态系统架构咨询、混合云解决方案。Teradata天睿公司大中华区副总裁、咨询及服务部门总经理唐青(Janet Tang)说,我们希望从业务的视角回答客户的问题,同时我们还有成熟的业务框架和咨询团队,最后就是支撑混合云能力,实现跨平台的输出。
当然大型企业和中小型企业的大数据实施不尽相同,Teradata天睿公司北京金融团队咨询服务部总监张天峰指出,中小企业一般的步骤是诊断、规划、路线图、速赢,重点是找到典型业务场景,扎实落地,实现速赢。
三大行业大数据实战
航空、快递、金融是三个非常典型的服务业,他们都具备数据驱动的特点,三个案例作为行业中的缩影,可以更好地了解大数据在行业中的应用模式和方法。
航空
消费者在选择航空公司时通常会更关心服务和价格,“十三五规划”对于航空业的规划是要在2020年将整体航运能力提升60%。在面对运力上升,运价透明等市场挑战下,航空公司如何做到把握趋势创造市场需求?
基于大数据分析,航空业还有很多业务提升的机会,如航空公司的航线规划,可以通过大数据来分析客流、成本、机型。再比如,有些航班上座率不高,可以使用大数据分析来设计航班的合并取消优化策略以提升运营效率。
航空公司通过算法预测趋势制定经营策略,做到最优的运力和运价。在运价上通过竞争分析、客户预测等一系列数据进行分析。
快递
快递行业在近几年可以称得上是黄金年代,在快速的成长后快递行业逐渐进入到成熟期,这就需要构建健全的管理体系,来面对激烈的市场竞争带来的盈利压力。
快递行业收益管理的三要素是成本分析、网点细分和价格策略。在唐青看来快递业比航空业的竞争更加惨烈,因为快递的供应链长且参与者多,所以要在各个环节上进行优化。
某快递公司的问题是其有很多加盟企业,如何让加盟企业的销售和成本同时纳入到整体管理中。企业最终实现大数据的收集和分析,帮助进行业务的决策,例如成本分析、网点特性、价格体系、预演分析、试点落地、回顾评审、市场(产品)推广等。
金融
金融行业是一个最容易流失客户的行业,原来的银行是以开设更多网点来吸纳客户,现在则需要多种产品组合来打动客户。
某银行基于市场环境提出了二次转型的目标,以客户为中心优化整个营销体系,实现客户精细化管理。识别出客户需要哪些产品,未来需要开拓哪些潜在客户,同时进行客户分级。利用数据分析从产品视角、客户视角得到新的业务商机。Teradata可以帮助金融行业识别客户属于哪一生命周期,通过客户标签系统识别客户行为,最终制定营销策略。
银行的数据基础相对较好,但是依然有很多数据的空白,像市场数据、征信数据,这对于产品成本的核算、定价带来挑战,这需要更多外部数据的补充完善分析结果。
上述三个行业都属于B2C领域,当然服务业除了个人业务还有对公业务。由于业务类型的不同,关注点也有所不同,个人业务更多以客户生命周期来讨论,对公业务更多和监管相关。唐青提到,个人业务更注重交易行为,在结合大数据的可能性上也更加丰富,在风险管控、创新点都走的更为靠前。
现在很多大型企业都把大数据用在精细化运营上,精细化运营对于企业来讲也是一个永久不变的话题,只不过之前太过粗放的管理模式,以及利润率的逐渐降低,也让现阶段的精细化运营显得非常重要,需要通过数据分析提升效率。
Teradata天睿公司华东区咨询服务部专业服务总监陈焰表示,开源、节流越来越要求从数据层面开始解决,例如物流公司看到哪一个航线的收益率更大,这些归根结底都是企业对盈利能力要求的提升。
在精细化运营的同时,企业利用数据分析的最终目的还是实现商业模式的创新。像航空公司基于“一带一路”战略开拓新航线,电信公司寻找数据变现的价值等等。Teradata也在通过其专业服务团队帮助企业建立创新实验室,真正可以创造出新的业务,让数据产生价值的同时实现最大化利用进行变现。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13