SPSS详细操作:样本均数间的多重比较
下面我们用例子来探讨:方差分析得出各组总体均数间的差异有统计学意义之后,如何进行样本均数间的多重比较。
一、问题与数据
为调查A、B、C三种治疗措施对患者谷丙转氨酶(ALT)的影响,某科室将45名患者随机分为三组,每组15人,分别采取A、B、C三种治疗措施,治疗后ALT水平(U/L)如下。试问应用三种治疗措施后,患者的ALT水平是否有差异?如果有差异,又是哪两个组间的ALT水平存在差异?
表1. 三组患者治疗后的ALT水平(U/L)
二、对数据结构的分析
整个数据资料涉及三组患者,每组15人,测量指标为血常规报告的ALT水平,因此属于多组设计的定量资料。
我们已经知道可以采用单因素方差分析的方法,比较三组总体均数之间的差异是否具有统计学意义,但如果差异有统计学意义,并不意味着任意两组之间的均数差异都有统计学意义。想进一步了解哪两个组间的ALT水平存在差异,还需要做样本均数间的多重比较。
三、SPSS分析方法
1. 数据录入SPSS
2. 进行单因素方差分析:
(1)Analyze → General Linear Model → Univariate;
(2)主对话框设置:分析变量(ALT)送入Dependent Variable 框中→分组变量(Group)送入Fixed Factor(s) 框中;
(3)Options设置:勾选Descriptive statistics(统计描述)和Homogeneity tests(方差齐性检验)→Continue。
3. 均数间的多重比较:
(1)点击Post Hoc按钮,将Group送入Post Hoc Tests for框中→在Equal Variances Assumed(方差齐)框中,勾选几种常用的多重比较方法:
LSD、S-N-K、Bonferroni、Tukey、Šidák、Scheffé's、Dunnett
(2)在Dunnett选项下面,Control Category选择First(以A组作为对照组),Test框中勾选2-sided→Continue→OK。
四、结果解读
Tests of Between-Subjects Effects表格给出了方差分析的结果。在方差齐的条件下,Group一行结果显示,F值=68.810, P(Sig.)<0.001。
Multiple Comparisons表格给出了部分方法的多重比较结果,分别列出了每个组和其他组比较的均数的差值(Mean Difference (I-J))、标准误(Std. Error)、P值(Sig.)和均数差值的95%置信区间(95% Confidence Interval)。检验水准α设为0.05,组间差异有统计学意义的结果已用*标出。
不同多重比较方法的选择,需要结合研究设计和每个方法各自的特点及适用条件。我们以Bonferroni法和Dunnett法的结果为例,进行解读:
Bonferroni法结果显示,A组与B组的ALT水平相比,Mean Difference=-15.160 U/L,P(Sig.)<0.001;A组与C组相比,Mean Difference=1.133 U/L,P(Sig.)=1.000;B组与C组相比,Mean Difference=16.293 U/L,P(Sig.)<0.001。
Bonferroni法和Šidák法的检验原理为根据需要比较的次数来调整检验水准。以Bonferroni法为例,调整的方法有两种:1、将α’=α/m作为检验水准的调整值(m为共需比较的次数,假设m=C32=3,α’=0.05/3=0.017),两两比较得出的P值与α’进行比较,即P<0.017时才能拒绝零假设;2、将计算得到的P值扩大为原来的m倍为P’,然后将P’与0.05比较,即P’<0.05时拒绝零假设。SPSS采取的是第二种方法,直接为我们给出了Bonferroni法和Šidák法调整后的P’值,故将调整后的P’值与检验水准0.05比较即可,不用再自行计算。
Dunnett法结果显示,B组与A组的ALT水平相比,Mean Difference=15.160 U/L,P(Sig.)<0.001;C组与A组相比,Mean Difference=-1.133 U/L,P(Sig.)=0.688。
Homogeneous Subsets表格同样给出了部分方法的多重比较结果。我们以Student-Newman-Keuls(S-N-K)法的结果为例,进行解读:
C组ALT水平的均数为12.147 U/L,A组均数为13.280 U/L,C组和A组被分到一个亚组(Subset 1),P(Sig.)=0.469;B组均数为28.440 U/L,被单独分到另一个亚组(Subset 2),P(Sig.)>0.999。
五、撰写结论
A组患者ALT水平为(13.28 ± 4.39)U/L,B组患者ALT水平为(28.44 ± 3.65)U/L,C组患者ALT水平为(12.15 ± 4.64)U/L,A、B、C三种治疗措施对患者ALT水平的影响差异具有统计学意义(F=68.810,P<0.001)。其中,B组与A组,B组与C组间患者的ALT水平差异均具有统计学意义(P<0.001),A组与C组间患者的ALT水平差异无统计学意义(P>0.05)。
六、延伸阅读
SPSS中均数间多重比较方法可以分为两大类,包括多重两两比较的检验(Multiple Comparisons)和对极差进行亚组同质性的检验(Homogeneous Subsets),二者结果的表现形式有所不同,如本例结果所示。
两两比较检验给出了每个组和其他组比较的结果。亚组同质性检验则先按照每个组均数的大小进行排序,将组间均数差异无统计学意义的均数分到一个亚组,这样会形成若干个亚组,同一亚组内的均数差异无统计学意义,不同亚组间的均数差异有统计学意义。
本例中,C组和A组被分到一个亚组,说明两组间均数差异无统计学意义;B组被单独分到一个亚组,说明B组与A组、B组与C组间的均数差异都有统计学意义。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21