大数据与BI的建设方法 | 平台建设第一步,做好需求调研
随着数据时代的到来,大数据技术吸引了越来越多的关注,深度数据分析已成为企业提升效能、洞察先机必备的重要能力。而如何有效实施大数据项目,充分发掘数据中蕴含的价值,则成为越来越多企业开始关注的问题。
然而很多企业在大数据项目开展之初,就在需求调研环节遇到了意料之外的困难。大数据项目的成功落地,是建立在完善的需求调研基础之上的;毕竟对于用户需求的有效满足,是项目实施的根本目的。而对于很多企业来说,在部署大数据项目的过程中,得到的结果却总是和自身的需求南辕北辙,导致项目失败。究竟是什么原因导致了这种情况的发生?
需求去哪儿了?作为导致项目失败的重要原因之一,对需求理解不一致的情况经常出现在项目部署的过程中——客户、销售、设计、开发等各方对于需求的表述和理解,很可能千差万别。著名的“需求秋千理论”形象地阐释了这个过程:
需求秋千理论
为什么会有这种不一致的情况出现?一般情况下,需求调研作为项目部署的第一环节,是之后开发、实施、维护的基础所在,而一旦客户与服务提供者在需求调研阶段就产生了沟通错位,很可能会导致之后的一系列环节出现偏差“追尾”,最终导致结果与预期相差万里。
在大多数项目实施流程中,对客户需求的获取是由企业服务提供商与客户通过反复沟通交流完成。这一步骤看似简单,但由于客户可能对大数据技术具体实现细节关注较少,表述较为简单;服务提供商缺乏沟通技巧、对需求理解认知出现偏差等原因,容易导致需求调研过程困难且易出错,直接影响到项目的实施成果。
需求调研:找回丢失的需求
由于需求引导与打造共识环节的缺失,导致需求认知出现的问题,必须在项目部署的初期得到妥善解决,通过完善的需求调研为之后的开发与实施打下坚实的基础。而对于需求的引导,可以参考“需求引导六步法”:
【前期准备】充分了解客户业务状况及基本需求,准备访谈提纲、对象、设计访谈环节等,通过前期准备保障需求引导过程的可操作性及高效性。
【访谈前导】浅谈调研目标、范围、时长及保密事宜,保障过程双方频道统一。
【分析业务】通过聚焦客户关注点,逐步引导客户在问题情境中阐明改善期望,分析当前业务举措。
【挖掘需求】根据业务表象深挖业务难点及痛点,探讨问题的根本原因。
【达成共识】根据实际业务场景与专业理论知识及行业案例相结合,提出合理化的建设方案,在双方充分沟通够并达成一致。
【赢得支持】与高层统一建设目标,逐级分解目标,落实行动计划,赢得全员支持。
通过这些步骤,能够将客户与服务提供商之间对于客户需求的认知的误差降到最低,从而在最大程度上确保项目初期不会因为需求理解不一致产生方向偏差。成功的企业是如何完成需求调研的?
经过多年的发展,大数据行业已经逐渐由概念走向实战,然而大多数大数据项目的发展依然进展缓慢。相关数据显示,美国平均100个大数据项目只有40个左右可以成功交付,无形中造成一种巨大的消耗和折损。不过令人意外的是,大数据技术领导厂商永洪科技旗下产品永洪一站式大数据分析平台部署成功率高达90%-95%,超过行业一倍的交付成功率引人注目。这与永洪在精准定位客户需求方面的做法不无关系:
在团队建设方面,永洪拥有上百人的专门服务团队,团队成员具备优秀的专业背景和丰富的实践经验,累计支持了超过2000家企业,拥有20多个行业的服务经验,已经达到了世界级的服务标准,能够快速精准了解客户需求,快速响应客户需求。在需求识别方面,永洪通过客户座谈、详细问卷、查阅资料、走访等方式,对客户特点、企业资源、项目目标、工期及预算等需求做到初步的了解和确定;同时深入学习了解客户公司所处的行业、公司概况,清楚掌握行业及公司发展特点、业务流程、数据分析模式等业务与技术内容,确保对客户需求理解的准确性和一致性。
在客户沟通层面,永洪选择在保护客户商业机密的前提下,从领导层的宏观需求到技术层的细节需求进行多层次的分析,了解客户真实想法,收集汇总所有意见,避免出现表达与沟通导致的偏差;同时,尽量接触到系统覆盖的所有部门需求,着重听取业务部门意见,形成对客户需求的立体化、多角度理解,防止出现沟通死角。
在确认需求层面,永洪对客户业务流程进行深入了解之后,从大数据业务流程介绍,重点需求分析入手,与客户一同深入分析项目的实现逻辑,分析解决方案和协商分歧,帮助客户充分了解项目实施过程的每一环节,尽可能减少信息不对称性所引起的矛盾,协助客户进一步明确核心需求,并最终实现项目质量、精度、细节等的确认和共识。
这些特质在永洪的客户案例中有鲜明的体现。永洪的某客户企业是国内知名汽车制造厂商,项目初期客户提出“各系统数据独立,需要形成整合在同一数据平台进行统一管理”的需求。针对该需求在进行简短的沟通后,了解到客户对于BI的理解不是很清晰,并且对自身的需求也并非特别明确。永洪团队按照需求引导六步法对客户进行了深层次调研。了解到客户工作开展的根本难点在于:
1. 数据量大(百亿级数据量)、数据源多(多套业务系统、不同的数据库类型)、规则不统一,在导入BI系统之前需要从各系统导出,再手工汇总到汇报材料,统计效率低、易出错,决策者看到的数据有延迟现象。
2. 分析需求不能及时呈现。在有新的分析需求时,需要先通过IT部门对接,进行需求传递,反复碰撞、建模,通过长时间建设后才能实现该分析需求。
3. 业务系统的OLTP架构和办公软件通用性设计都无法满足现有的业务分析需求,尤其是对历史数据的追溯和分析等。
基于以上几点,通过反复调研沟通,在了解到客户的根本需求的基础上,永洪针对性地完成了项目体系的搭建:
1. 搭建hadoop分布式数据管理体系,通过ETL定时自动汇总到数仓中,建立历史数据存储机制,进行数据源统一管理。
2. 按业务分析主题方式进行业务建模,能够快速输出现有的分析需求报告,同时业务人员可通过永洪产品进行自助式查询和分析,业务分析需求实现敏捷化。
最终将该需求及解决方案提交给客户高层确认时,得到了客户方的认可,并已经实施上线。
结语
需求调研是大数据项目开发与落地的基础,永洪正是在夯实这一基础之上,才实现了超出行业平均值一倍的交付成功率,打造出覆盖金融、制造、电信、医疗、政府、咨询、互联网、通讯、能源等领域的一系列优秀需求解决方案,也成为大数据技术在各行各业的普及推广与项目落地的优秀范例。
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20