数据挖掘对网络营销的重要意义
近些年来,已经有越来越多的企业把通信、网络技术和计算机应用引入企业的日常管理工作和业务开发处理当中,企业的各类信息化程度也在不断提高。现代科技信息技术的广泛应用已经显着的提高了企业的工作效率和经济效益。但是,在使用信息技术给企业带来的方便、快捷的同时,也不断的出现了新的问题和需求。企业经过多年积累了大量的歷史数据,这些数据对企业当前的日常经营活动几乎没有任何的使用价值,成了留之无用弃之可惜的累赘。而且储藏这些歷史数据会对企业造成很大的困难和费用开销。为此数据挖掘技术应用在网络营销中势在必行,全面细致的分析数据库资源并从中提取有价值的信息来对商业决策进行支持,从而来控制运营成本、提高经济效益。本文将从网络营销中数据挖掘技术的几个应用进行探讨和分析。
1客户关系管理
客户关系管理在网络营销,商业竞争是一家以客户为中心的竞技状态的客户,留住客户,扩大客户基础,建立密切的客户关系,客户需求分析和创造客户需求等,是非常关键的营销问题。客户关系管理,营销和信息技术领域是一个新概念,这在90年代初,软件产品在上世纪90年代后期出现的诞生。目前,在国内和国外的此类产品的研究和发展阶段。然而,继续与数据仓库和数据挖掘技术的进步和发展,客户关系管理,也是对实际应用阶段。CRM的目标是管理者与客户的互动,提升客户价值,提高客户满意度,提高客户的忠诚度,还发现,市场营销和销售渠道,然后寻找新客户,提高客户的利润贡献率的最终目的是为了推动社会和经济效益。客户关系管理的目的,应用是改善企业与客户的关系,它是企业和服务本质管理和协调,以满足客户的需求,企业政策支持这项工作,并联系客户服务加强管理,提高客户满意度和品牌忠诚度。
然而,数据挖掘可以应用到很多方面的CRM和不同阶段,包括以下内容:
(1)“一对一”营销的内部工作人员认识到,客户是在这个领域的企业,而不是贸易发展生存的关键。与每一个客户接触的过程,也是了解客户的进程,而且也让客户了解业务流程。
(2)企业与客户之间的销售应该是一种商业关系不断向前发展。客户和营销公司成立这种方式,而且有许多方法可以使这种与客户的关系,往往以改善包括:延长时间,客户关系和维护客户关系,以进一步加强相互交往过程中,公司可以在对方取得联系更多的利润。
(3)客户对客户盈利能力分析。我们的客户盈利能力是非常不同的,如果你不明白客户盈利能力,很难制定有效的营销策略,以获取最有价值的客户,或进一步提高客户的忠诚度的价值。数据挖掘技术可以用来预测客户在市场条件变化不同的盈利能力。它可以找到所有这些行为和使用模型来预测客户行为模式的客户交易盈利水平或新客户找到高利润。
(4)在所有部门维护客户关系的竞争日趋激烈,企业获得新客户的成本上升,因此,保持现有客户的关系变得越来越重要。对于企业客户可分为三大类:没有价值或者低价值的客户,不容易失去宝贵的客户,并不断寻找更多的优惠,更有价值的服务给客户。前两个类型的客户,客户关系管理,现代化,然而,最具潜力的市场活动,是第三个层次的用户,而且还特别需求和营销工具,以保护客户,可以减缓企业经营成本,而且还获得了宝贵的客户。数据挖掘还可以发现,由于客户流失,该公司能够满足这些客户的需要,采取适当措施,保持销售。
(5)客户访问企业业务系统资源,包括能够获得新客户的关键指标。为了提供这些新的资源,包括企业搜索客户谁不知道该产品的客户,可能是竞争对手,服务客户。这些细分客户,潜在客户可以帮助企业完成检查。
2企业经营定位
通过挖掘客户的有关数据,可以对客户进行分类,找出其相同点和不同点,以便为客户提供个性化的产品和服务,使企业和客户之间能够通过网络进行有效的沟通和信息交流。例如,关联分析,客户在购买某种商品时,有可能会连带着购买其他的相关产品,这样购买的某种商品和连带购买的其他相关产品之间就存在着某种关联,企业可以针对这种关联进行分析,分析出规律,已制定有效的营销策略来长效的起到吸引客户连带消费,购买其他产品的营销策略。它能够智能化地从大量的数据中提取出有用的信息和知识,为企业的管理人员提供决策支持。数据挖掘技术使数据库技术进入了一个更高级的阶段,它不仅能对过去的数据进行查询和遍歷,并且能够找出过去数据之间的潜在联系,从而促进信息的传递。
客户群体的划分也会用到数据挖掘,没有基于数据挖掘的客户划分,就没有真正的差异化、个性化营销,就没有现代营销的根本。做为企业的领导者,不管你的企业是卖产品的还是卖服务,第一个应该准确把握的商业问题就是你的目标客户群体,他们是谁,有什麽特点和行为模式,有那些独特的喜好可以作为营销的突破口,有多大的多长久的赢利价值。这些问题是你整个商业运做的核心和基础,不了解你的客户,下面的路就根本别指望能走下去了。数据挖掘营销应用中的客户群体划分可以科学有效的解决这个问题,也能给企业找到一个合理的营销定位。
3客户信用风险控制
数据挖掘技术在90年代开始应用于信用评估与风险分析中。企业在进行网络营销的过程中会受到各种各样的来自买方的信用风险的威胁,随着市场竞争的加剧,贸易信用已经成为企业成功开发客户和加强客户关系的重要条件。客户信用管理主要是搜集储存客户信息,因为客户既是企业最大的财富来源,也是风险的主要来源。为了让企业在这方面更少的受到威胁,可以利用数据挖掘技术发现企业经常面临的诈骗行为或延付货款行为,进而进行回避。同时尽可能把客户信用风险控制在交易发生之前是成功信用管理的根本。因此,充分获取客户的详细资料并做出安全的决策非常重要。
客户信用风险管理应用数据挖掘技术的优势:
(1)数据挖掘技术,自动总结相对简单的评估模型,数据挖掘应用程序的形式被广泛用于学习技术,它可以自动完成统计归纳和推理机实现的任务数量,系统用户无法理解模型详情及有关统计知识的情况下,它可以很容易地得出结论。这种评价模型在实际应用中降低了成本;
(2)数据挖掘技术更适合描述的财务指标和信贷上的信用评价模型指标为基础的传统方法,非线性特性的情况基本上是线性的基础上适当的方法和实际应用,企业信用状况和财务指标常表现出非线性特性,但在体重指标体系和分配方法来描述这些困难的非线性关系,实现了数据挖掘应用,其中不少是在非线性系统为基础,尤其描述了合适的非线性特性;
(3)数据挖掘技术也可以适应各种形式的数据,数据挖掘可以是连续的数据,离散数据,而其他形式的数据处理,以便在更大的灵活性,在选择指标时,更加符合客观实际的信用风险模型。
(4)数据挖掘技术是优于修正的噪音数据,对那些在特殊阶段或数据的完整性,市场条件可能不准确,有可能是虚假的数据。由数据挖掘的方法可以修改一些在一定程度上,从而提高了模型的准确性进行评估;
(5)数据挖掘在不完全信息的情况下也可以计算,计算信贷风险往往会遇到德国不完整的信息问题,一些指标只能在一个范围的估计。通过粗糙集数据挖掘或分类树方法,可以优化性能的范围,以获取该指标更准确的估计;
为现代信用风险管理方法有两个:第一是所谓的指数法,其基础是信用相关业务的某些特性来企业信用评估;第二类是所谓的结构化方法,根据歷史数据和市场数据模拟在企业资产价值变化的动态持续的过程,然后确定其企业信用的位置。
4在网络营销中进行数据挖掘的优势
网络营销作为适应网络经济时代的网络虚拟市场的新营销理论,是市场营销理念在新时期的发展和应用。它能够智能化地从大量的数据中提取出有用的信息和知识,为企业的管理人员提供决策支持。数据挖掘技术使数据库技术进入了一个更高级的阶段,它不仅能对过去的数据进行查询和遍歷,并且能够找出过去数据之间的潜在联系,从而促进信息的传递。
1.维护原有客户,挖掘潜在新客户
网络营销中销售商可以通过客户的访问记录来挖掘出客户的潜在信息,跟据客户的兴趣与需求向客户有针对性的做个性化的推荐,制定出客户满意的产品服务。在做好维护原有老客户的基础上,通过对数据的挖掘,利用分类技术,也可以寻找出潜在的客户,通过对web日志的挖掘,可以对已经存在的访问者进行分类,根据这种精细的分类,还可以找到潜在的新客户。
2.制定营销策略,优化促销活动
对于保留的商品访问记录和销售记录进行挖掘,可以发现客户的访问规律,了解客户消费的生命周期,起伏规律,结合市场形势的变化,针对不同的商品和客户群制定不同的营销策略,保证促销活动针对客户群有的放矢,收到意想不到的效果。
3.降低运营成本,提高竞争力
网络营销的管理者可以通过数据挖掘发现市场反馈的可靠信息,预测客户未来的购买行为,有针对性的进行营销活动,还可以根据产品访问者的浏览习惯来觉定产品广告的位置,使广告有针对性的起到宣传的效果。从而提高广告的投资回报率,从而能降低运营成本,提高且的核心竞争力。
4.对客户进行个性化推荐
根据客户采矿活动对网络规则,有针对性的网络营销平臺,提供“个性化”服务。个性化服务是在服务策略和服务内容的不同客户的不同,其本质是客户为中心的Web服务的需求。它通过收集和分析客户资料,以了解客户的利益和购买行为,然后采取主动,以达到建议的服务。
5.完善网络营销网站的设计
网站的建设者可以根据对客户交易行为的记录和反馈的情况对站点做出改进,站点的设计者可以根据这些信息进一步优化网站结构,站点导航等功能来提高站点的点击率,为客户提供更为方便的浏览方式。利用关联规则,
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31