统计之 - Contingency Table
In statistics, a Contingency Table(also referred to as Cross Tabulationor cross tab) is a type of table in a matrix format that displays the(multivariate) frequency distribution of thecategorical variables.The term contingency table was first used by Karl Pearson in "On the Theoryof Contingency and Its Relation to Association and Normal Correlation",[1]part of the Drapers' Company Research Memoirs Biometric Series I published in1904.
A crucial problem of multivariate statistics is finding(direct-)dependence structure underlying the variables contained inhigh-dimensional contingency tables. If some of the conditional independencesare revealed, then even the storage of the data can be done in a smarter way(see Lauritzen (2002)). In order to do this one can use information theoryconcepts, which gain the information only from the distribution of probability,which can be expressed easily from the contingency table by the relative frequencies.
Suppose that we have two variables, sex (male or female) and handedness(right- or left-handed). Further suppose that 100 individuals are randomlysampled from a very large population as part of a study of sex differences inhandedness. A contingency table can be created to display the numbers ofindividuals who are male and right-handed, male and left-handed, female andright-handed, and female and left-handed. Such a contingency table is shown below.
The numbers of the males, females, and right- and left-handedindividuals are called Marginal Totals. The grand total, i.e., the totalnumber of individuals represented in the contingency table, is the number inthe bottom right corner.
The table allows us to see at a glance that the proportionof men who are right-handed is about the same as the proportion of women whoare right-handed although the proportions are not identical. The significanceof the difference between the two proportions can be assessed with a variety ofstatistical tests including Pearson's chi-squared test, the G-test, Fisher'sexact test, and Barnard's test, provided the entries in the table representindividuals randomly sampled from the population about which we want to draw aconclusion. If the proportions of individuals in the different columns varysignificantly between rows (or vice versa), we say that there is a contingencybetween the two variables. In other words, the two variables are notindependent. If there is no contingency, we say that the two variables areindependent.
The example above is the simplest kind of contingency table,a table in which each variable has only two levels; this is called a 2 x 2contingency table. In principle, any number of rows and columns may be used.There may also be more than two variables, but higher order contingency tablesare difficult to represent on paper. The relation between ordinal variables, orbetween ordinal and categorical variables, may also be represented incontingency tables, although such a practice is rare.
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20