在大数据时代中,如何更快地即时分析巨量数据,成为新的创业契机。来自台湾的团队「核桃运算MacroData」,从最底层的数据分析架构出发,耗费两年半的时间,研发出可分析不同资料属性,以及横跨各式硬体的资料分析引擎,比起现有的资料库来说,运算速度还要快50倍到100倍,今年下半年将正式走入市场。
令人意外的是,核桃运算一开始并非瞄準大数据商机。核桃运算的灵魂人物薛文蔚,是台大资工系第一届学生,毕业取得哥伦比亚大学资工博士学位后,先到华尔街工作两年,在1995年开始创业,开发教育平台。2000年回到台湾 ,在知名的软体公司Computer Associates负责亚洲地区的合资公司业务,随后在台湾成立供应链管理公司「联合通商eBizprise」,和在中国的子公司「eBizServe」。
2011年,薛文蔚遇到一个中国大陆大型零售商的供应链预测问题。当20万个品项、上万个通路,再加上要做100週的预测时,资料共有惊人的上百亿点,如此庞大的资料量,传统的资料库无法负荷。他发现市场空缺后,找来公司裡两位同事黄怡诚和赖育骏,一同成立研发团队。
虽然本来是从供应链管理的问题切入,但深入研究后薛文蔚却发现,这是大数据的问题。他解释,现在用的资料库技术都是1970年时提出的架构,很多理论是基于当时的假设,「但当底层条件已经改变时,我们不该再用过去的模式想事情。」于是团队从非常底层的架构重新思考,适合现在使用的运算模式是什么。
其中最大的差异是,过去资料运算时,需先从资料储存的地方如硬碟,搬到记忆体运算后,再把资料放回去。但现在的资料量早已是过去的好几千万倍,薛文蔚打个比方:「Data的成长就好像房价一样,Code的成长则好像薪水一样。」
如果沿用过去搬动资料的运算方式,大多时间都是花在「搬移」上,因此核桃运算主张透过不搬动的「in-place computing」运算方式,直接把程式送到资料的所在地运算,少了搬移动作,资料运算速度就会提昇很多。目前团队已申请四项美国专利,其中叁项已被核准。
比起现有的资料库运算方式,核桃运算共同创办人陈元贞解释,以目前知名的Hadoop来说,透过分散式运算,把1部机器要算的东西放到100部机器上算,虽能提升运算速度,但却不是每个公司都能负担的起部建分散式运算系统。
若是非关联式的NoSQL资料库,数据存储没有一定的模式架构,虽然速度可以变快,但也因为不需固定模式,当要做两者的比较分析或资料採矿就有些困难。若是传统的MySQL资料库,更是无法负荷现在庞大的资料量。
从2011年下半年先在母公司联合通商旗下成立团队开始,众人花了两年半时间研发,终于在今年推出产品「Big Object」,团队也在今年2月从母公司独立。Big Object主要运行在64 bit的装置上,因为採用「in-place computing」,最大优势就是快,运算速度可快50倍至100倍,因此可做到当下的即时分析。
此外,Big Object也能分析异质性资料,不只企业本身的商务资料,也能结合open data和非结构性资料,像是零售业者可和天气预测或脸书贴文交叉比对。「就像冰山一样,本来你只看到交易资料,可是更多的是你没有看到水面底下的资料,」陈元贞说。
也因为Big Object是很轻巧的资料运算引擎,在未来物联网时代,小至眼镜、手錶,大到汽车、冰箱,每个装置都能成为分析资料的机器,因此这些装置也都可以嵌入Big Object的分析引擎,根据数据做出最优化的预测或行动,如调整车速、冰箱温度等。
Big Object主要针对BI产品(Business Intelligence,从数据分析中挖掘商业价值)或LOG分析的软体开发商,可直接将Big Object嵌入在软体裡,收入以授权年费为主。目前核桃运算已有些试用客户,像是在台湾就已和神坊资讯旗下的购物网站合作,透过Big Object计算商品间的相关性,进而做出即时的购物推荐。
产品到位后,今年下半年Big Object将开始走入市场,目前处于客户开发阶段。陈元贞表示,由于这类应用主要在美国市场居多,因此今年3月团队也在美国註册公司,预计今年在台湾和美国都要各自招募十人团队,未来台湾负责研发,美国则负责业务。
核桃运算四位共同创办人,从左至右为赖育骏、薛文蔚、黄怡诚和陈元贞
【创业教我的事】找出自己的定位,在过程中随时保有自己的判断,尤其是对产品和市场策略的看法。
Q1. 希望提供这个社会什么价值? 最主要是提供一个快速又可负担的分析引擎,帮助资料分析者或商业决策者,发掘出隐含在大量资料背后的资讯。
Q2. 长远来看,贵公司想成为何种类型的公司?
我们希望做到「资料处理界的Intel」,未来软体内可以搭载BigObject的运算核心,不管是CRM、ERP、BI或是Log分析软体,都能透过BigObject的即时分析而有更优化的软体功能。
本文来源:CDA数据分析师培训官网
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21