香港企业采用大数据技术仍在起步,要考虑的事的确很多,但笔者认为厂商经常说得过于复杂,令企业设计大数据架构时存有疑问,例如在建构时选何制定方案使用方法及规模,相信是很多决策人希望了解的事,那么我们尝试化繁为简,由浅入深了解部署时的考虑点。
在我们考虑大数据时,注意力放在「大」这个字,但是在建设基础架构时,我们还应该注意「分散式」的数据处理。事实上,大数据软件需要处理大量资讯,而且在将资料复制到多个位置时,数据的容量便会倍增。但是,大数据的最重要属性并不在于它的规模,而在于它将大作业分割成许多小作业的能力,它能够将一个任务的资源分散到多个位置变为同时处理。在将大规模和分散式架构组合在一起时,我们就能发现大数据网络有一组特殊的需求,下面是需要考虑的六个要素:
1.不容有失 提升网络弹性
如果有一组分散式资源必须通过互联网进行协调时,可用性就变得非常重要。万一网络出现故障,便会出现不连续的计算资源与资料库崩坏。说白一点,大多数网络工程师的主要关注点是正常执行时间,但是,网络故障的原因又各不相同,包括设备故障(硬体与软体)、维护和人为错误。我们都知道伺服器故障是避无可避,网络的可用性也很重要,所谓完美的设计其实是不存在。
网络架构师应该设计一些能适应故障的弹性网络,网络的弹性取决于路径多样性(资源之间设置多条路径)和容错移转(能够快速发现问题和转移到其他路径上)。除了传统的平均故障时间间隔(MTBF)方法,大数据网络的设计标准一定要包括这些架构。
2. 解决网络拥塞
大数据应用程式不仅仅是规模大,而且还有突发性的流量「洪峰」。当一个程序启动后,数据就开始流转,在高流量时段时拥塞造成的问题可以很严重,例如可能引起更多的Queues增加延迟和packet lost。网络拥塞还可能令请求多次发出,这可能让本身负载繁重的网络无法承受。因此,网络架构设计时应该尽可能减少拥塞点,要网络具有较高的路径多样性,这样才能容许网络流量分流到大量不同的路径上。
3. 性能一致要比迟延性更重要
实际上,大多数大数据应用程式对网络延迟并不敏感。如果运算时间以秒计或以分钟计的话,即使出现较大延迟也是可以接受,例如为几千ms。然而,大数据应用程式一般具有较高的同步性。这意味着作业是并存执行的,而各个作业之间较大的性能差异可能会引发应用程式故障。除第1至2点提到网络的高效性,空间和时间上也要具有一致的性能。
4. 预留未来的扩展性
大多数大数据丛集实际上并不大,根据Hadoop Wizard的资料,2013年大数据丛集的平均节点数量只有100个。换句话说,即使每一台伺服器配置双重redundancy,支援整个丛集也只需要4个接入switch (假设是分别有72个10GbE网络接口的Switch)。
扩展性并不在于现在丛集现在有多大规模,而是在乎如何平衡地扩展支援未来的部署规模。如果基础架构设计现在只适合小规模部署,那么整个架构将如何随着节点数量的增加而不断进化?未来何时需要完全重新设计?这个架构是否需要一些近程资料和资料位置资讯?关键是扩展性并不在于绝对规模,而是更关注于实现足够规模解决方案的路径。
5. 网络分割 关键任务先行
网络分割是大数据应用环境的重要条件,形式上,要将大数据的流量与其他网络流量区分开来,这样应用程式产生的突发流量才不会影响其他关键任务网络负载。除此之外,运行多个作业的多个用户,以满足性能、合规性和审计的要求。这些工作要求在一些场合中实现网络负载的逻辑分离,某些场合还要作物理分离。
6. 应用感知力
虽然大数据的概念与Hadoop部署关系密切,但是它已经成为丛集环境的代名词。根据不同应用程式的特点,环境的需求随之不同。有一些可能对频宽要求高,一些则可能对延迟很敏感。总之,一个网络要支援多应用程式和多用户,它就必须要能够区分自己的工作负载,并且要能够正确处理各个工作负载,不仅仅是提供足够的频宽。
最后,应用程式体验取决于很多因素,包括网络拥塞和分割。创建一个满足所有这些需求的网络需要具备前瞻性,不仅要考虑基础架构能够支援的伸缩规模,还要考虑不同类型的应用程式如何共存于同一环境中。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29持证人简介 郭畅,CDA数据分析师二级持证人,安徽大学毕业,目前就职于徽商银行总行大数据部,两年工作经验,主要参与两项跨部 ...
2025-01-282025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-01-27在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-01-26数据指标体系 “数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而 ...
2025-01-26在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-25俗话说的好“文不如表,表不如图”,图的信息传达效率很高,是数据汇报、数据展示的重要手段。好的数据展示不仅需要有图,还要选 ...
2025-01-24数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪70 ...
2025-01-24又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09