有些人做架构决策的时候纯粹是基于谁的声音大:
@xeraa @lukaseder 不,我们最重要的架构决策是基于 #tweets. 这是一个面向Twitter的体系结构。
— 加里斯 维斯特恩 (@gareth) 2016年9月21日
然而对其他大多数人而言,决策并不是这么简单。例如:什么时候我们应该启用NoSQL存储系统来代替关系型数据库管理系统(RDBMS)?
关系型数据库(RDBMS)能够适应所有情况
这个问题很明显,假设你开始就使用关系型数据库(RDBMS),这种传统的数据库系统能够解决任何问题且不容易被取代。这意味着什么?简单的举例:
关系型数据库(RDBMS)一直被使用,所以他们和”新来者“相比在市场上有巨大的优势, “新来者”缺少优秀的工具,如社区、支持也不够成熟。
埃德加·弗兰克·科德的工作对我们整个行业产生的最大影响可能就是,自那以后,几乎没有像关系模型那样具有革命性的东西了。对一个替代型数据库来说,它很难被普遍使用。意即它们通常被用来解决小问题。
有人会这么说,有时候你确实碰到一个小问题。 例如, 一个图形数据库的问题。然而事实上,图表和你在关系模型中所标识的东西没有什么根本性的不同。它很容易用多到多的关系表来模拟一个图。
这些同样使用于数据库中的XML/JSON(别忘记, JSON就是XML,但比XML少一些语法和属性,所以它更棒)。有时候,您需要在数据库中的层次结构中存储文档的结构(层次结构数据)而不是规范他们。当然你也可以先规范文档,但可能会做很大的无用功。
大多数现代关系型数据库提供XML/JSON数据结构来存储(以及更重要的查询)数据,包括PostgreSQL、Oracle、DB2、SQL Server等。
那么,我们什么时候决定切换?
作为开发人员,我们倾向于能够快速的切换。例如,当我们处理图形时,我们喜欢用Neo4j, 因为它具有不起的数字查询语言。 当我们使用JSON时,我们喜欢用Couchbase, 因为它实现了有趣的N1QL查询语言。这两种语言都深受SQL查询语言影响,在我看来我们的供应商会给我们提供明智的选择(不会像MongoDB基于JSON查询语言),终究原因,SQL语言乃是由最强大和最流行的4GL 曾经创造的。
但是作为开发人员,我们不应该轻率的做出决定。 首先,虽然这些专业的数据库看起来像是更好的选择,但是运营团队需要增加额外的维护成本、监控、补丁以及生产系统的额外调整。这在关系型数据库中真实的存在,最近的一个突出的例子是Uber从PostgreSQL 切换回MySQL:
然而唯一令人遗憾的是他们切换方式和以前相反,这点请注意。事实上你的团队总是喜欢使用相同的数据库有很多的原因,即使是这些数据库团队开发许可很贵,在很多案例里更贵:
从事额外的许可和/或合同需要新数据库供应商提供技术支持.
为了新技术寻找技能熟练的数据库管理员(DBA)(能够胜任新数据库).
维护两个数据仓库,并能维持数据同步的成本。
最终,有一个临界值:
@gareth @xeraa 一般情况下,都有一个临界值,没到临界点,可以坚持使用关系型数据库(RDBMS),在某种程度上就要开始考虑同时使用两种数据库或者完全迁移到另一个上。
— 卢卡斯埃德尔 (@lukaseder) 2016年9月21日
在数据库中使用JSON,这很简单:
偶尔使用JSON存储:坚持使用关系型数据库(RDBMS)。
一切以JSON为主:可以考虑不用关系型数据库(RDBMS)。
这个同样适用于图形问题。SQL完全能够处理图形和递归遍历。递归的计算子集之和,这是一个时髦的声明:
如果你只有一点树形/图形遍历需要计算(例如,一个简单的菜单结构),就无需涉及关系型数据库。如果图形存储是您的主要业务,那么关系型数据库可能不是一个好的选择。
结论
无论你要解决什么问题,请记住:如果你有一把锤子,而每一个问题开始的时候都可以当作钉子。但不要把关系型数据库当作是把愚蠢的锤子。不要小看它,在2016年它在处理非关系型小众的事情上做的非常的好。
关系型数据库仍然是处理各种数据问题的最好的选择。 只有当你存储超过一定阀值(或者你可以预见到要这么做),那是你应该去寻找替代品来替代它。因为当你去寻找一个新的(JSON,图形等)来改变的时候,要浪费你很多的时间回到你“正常”的关系业务里去。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20