SPSS分析技术:分段拟合;电业局如何通过简单的回归模型来预测居民用电量
今天给大家介绍利用分段回归模型拟合的办法来处理一些特殊的变量关系。某些变量之间的关系非常有趣,不是恒久的线性或非线性关系,可能其中一段表现为线性,而另一段表现为非线性。例如,我们举一个每个人都有切身体会的例子,人的身高和年龄的关系,在3岁到10岁期间,它们基本是线性相关,而高中以后,身高基本定型,不再随年龄的增加而增长。对于这样的变量关系,在3到10岁期间,我们可以用一个线性方程来拟合年龄和身高的关系,而高中以后则需要换另一个方程,可以是线性的,也可以是非线性的,需要根据数据情况来选择。这就是分段回归模型的分析思路。
分段回归模型
对于相关关系在自变量取值区间上不是恒定不变的情况,我们可以只分析某一部分明确相关关系的数据,这样可以保证结果的简洁和稳定;当需要考虑整个自变量取值区间时,就必须要包含整个取值区间的数值,此时,如果整个区间可以用几个分段回归模型表达,那么就可以进行分段拟合。通常的做法是对每个部分进行单独拟合,但是这样做参数较多,且样本被人为分开,当样本量较小时会导致分析结果的准确性很差。
SPSS的非线性回归模块完美的解决了这个问题,可直接对分段函数进行直接拟合,以充分利用信息,提高模型的预测精度。由于原理简单,我们下面用一个具体的案例来介绍如何利用SPSS进行分段回归模型拟合。
生活案例
近几年,每年夏天关于全国用电紧张的新闻报道都会准时出现。造成用电紧张的原因很多,一方面是全球变暖这个总体大趋势的影响,人们需要用各种电器消暑降温;另一方面是科技的进步,各种空调冰箱等电器走进千家万户,用电量自然水涨船高。电量吃紧最紧张的就是国家电网,某地电业局打算通过过往数据的分析,建立模型来准确预测各种温度状况下的用电负荷,以期提高电网运行和能源调配的效率。下面有一份数据,记录了该地去年5 月到8月的日平均气温,以及当天的居民用电总量,希望建立居民用电量与日平均气温间的预报方程。
分析思路
为了能够对气温和用电量之间的关系有基本了解,两变量的散点图是最直观的工具。首先绘制日平均气温和居民生活用电量间的散点图,然后根据散点图展示的变量关系,来选择合适的回归模型。散点图的作图方法前面介绍过(【图形】-【图标构建器】),这里就不在赘述,直接给出下面的结果。
由上图可知,日平均气温对用电量的影响分成两个阶段:24摄氏度以下时,用电量并不会随着气温的改变而显著增加;24摄氏度以上时,用电量随着平均气温的上升呈现明显的上升趋势。因此,该数据的模型可以这样写:
分析步骤
选择菜单【分析】-【回归】-【非线性回归】;在跳出的对话框中作如下操作。将生活用电量选为因变量,在模型表达式框内输入(平均气温 < 24)*b1+(平均气温 >= 24)*(a2*平均气温+b2);点击参数,设置表达式中的三个参数,由于是比较线性模型,迭代初始值都设置为1。点击继续,然后点击确定,输出结果。
结果解释
1、模型的方差分析结果;
由结果可知,分段回归模型总的决定系数达到0. 806,说明模型的拟合效果不错。
2、模型参数值表格;
根据模型参数值表格,我们可以写出两个回归方程:
为了验证根据前面我们根据散点图选定的24摄氏度趋势分界点是否为数据的合理趋势分界点,将24摄氏度代入回归方程2,可算得用电量的估计值为2157. 52,因此以24摄氏度作为分段点是比较合理的。
3、残差图分析;
上图是自变量与残差的散点图,可见在24摄氏度前后,残差的分布都是随机的,且前后没有明显变化,离散程度基本相同,因此对数据进行分段回归模型拟合是合理的。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21