SPSS分析技术:分段拟合;电业局如何通过简单的回归模型来预测居民用电量
今天给大家介绍利用分段回归模型拟合的办法来处理一些特殊的变量关系。某些变量之间的关系非常有趣,不是恒久的线性或非线性关系,可能其中一段表现为线性,而另一段表现为非线性。例如,我们举一个每个人都有切身体会的例子,人的身高和年龄的关系,在3岁到10岁期间,它们基本是线性相关,而高中以后,身高基本定型,不再随年龄的增加而增长。对于这样的变量关系,在3到10岁期间,我们可以用一个线性方程来拟合年龄和身高的关系,而高中以后则需要换另一个方程,可以是线性的,也可以是非线性的,需要根据数据情况来选择。这就是分段回归模型的分析思路。
分段回归模型
对于相关关系在自变量取值区间上不是恒定不变的情况,我们可以只分析某一部分明确相关关系的数据,这样可以保证结果的简洁和稳定;当需要考虑整个自变量取值区间时,就必须要包含整个取值区间的数值,此时,如果整个区间可以用几个分段回归模型表达,那么就可以进行分段拟合。通常的做法是对每个部分进行单独拟合,但是这样做参数较多,且样本被人为分开,当样本量较小时会导致分析结果的准确性很差。
SPSS的非线性回归模块完美的解决了这个问题,可直接对分段函数进行直接拟合,以充分利用信息,提高模型的预测精度。由于原理简单,我们下面用一个具体的案例来介绍如何利用SPSS进行分段回归模型拟合。
生活案例
近几年,每年夏天关于全国用电紧张的新闻报道都会准时出现。造成用电紧张的原因很多,一方面是全球变暖这个总体大趋势的影响,人们需要用各种电器消暑降温;另一方面是科技的进步,各种空调冰箱等电器走进千家万户,用电量自然水涨船高。电量吃紧最紧张的就是国家电网,某地电业局打算通过过往数据的分析,建立模型来准确预测各种温度状况下的用电负荷,以期提高电网运行和能源调配的效率。下面有一份数据,记录了该地去年5 月到8月的日平均气温,以及当天的居民用电总量,希望建立居民用电量与日平均气温间的预报方程。
分析思路
为了能够对气温和用电量之间的关系有基本了解,两变量的散点图是最直观的工具。首先绘制日平均气温和居民生活用电量间的散点图,然后根据散点图展示的变量关系,来选择合适的回归模型。散点图的作图方法前面介绍过(【图形】-【图标构建器】),这里就不在赘述,直接给出下面的结果。
由上图可知,日平均气温对用电量的影响分成两个阶段:24摄氏度以下时,用电量并不会随着气温的改变而显著增加;24摄氏度以上时,用电量随着平均气温的上升呈现明显的上升趋势。因此,该数据的模型可以这样写:
分析步骤
选择菜单【分析】-【回归】-【非线性回归】;在跳出的对话框中作如下操作。将生活用电量选为因变量,在模型表达式框内输入(平均气温 < 24)*b1+(平均气温 >= 24)*(a2*平均气温+b2);点击参数,设置表达式中的三个参数,由于是比较线性模型,迭代初始值都设置为1。点击继续,然后点击确定,输出结果。
结果解释
1、模型的方差分析结果;
由结果可知,分段回归模型总的决定系数达到0. 806,说明模型的拟合效果不错。
2、模型参数值表格;
根据模型参数值表格,我们可以写出两个回归方程:
为了验证根据前面我们根据散点图选定的24摄氏度趋势分界点是否为数据的合理趋势分界点,将24摄氏度代入回归方程2,可算得用电量的估计值为2157. 52,因此以24摄氏度作为分段点是比较合理的。
3、残差图分析;
上图是自变量与残差的散点图,可见在24摄氏度前后,残差的分布都是随机的,且前后没有明显变化,离散程度基本相同,因此对数据进行分段回归模型拟合是合理的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31