大数据时代,网上奸商的新玩法
最近,网上曝光了一段关于顺丰以及四通一达快递代收点,帮助莆田假冒运动鞋厂商伪造快递的视频。按照视频中的说法,快递发货地点是可以造假的!你想要哪里的发货地点,物流就可以给你提供哪里的供货地点!
所以,别以为看到发货地点是国外,就认为我们海淘来的阿迪、耐克、新百伦等名牌运动鞋就是正品。
话说现在已进入“大数据”时代,电商陷阱越来越科幻,今天照妖镜再次揭露,网上奸商的新玩法。
“看人下刀”,电商玩的更科幻
内幕:你在网上买件大牌化妆品,在订单提交发货之前,系统会查询分析你在全平台的购物数据(大数据内部共享):购买均价,常购品牌,退货率。如果你同类产品消费倾向绝对大部分在100~200元品牌,系统就判定你没用过大牌真品,在后台将你备注:低风险,发的货有30%几率是高仿货。如果在你购买记录里多次购买品牌,就自动分配真品。
真相:你的消费记录,购买记录,客单价记录,将作为发货参考数据被系统识别,看人下刀更精准。
妥协的人,最后被玩坏
内幕:很多人有类似经历:买来的产品有小问题又不影响使用怎么办?赶紧退!电商常常解释是因为发货前没有检查货品!这是假话,每一批次的瑕疵产品都有记录,之所以发给你,是因为在你的综合退货率低于电商平均标准。系统会认定你这位客户“好说话”“会将就”,一有垃圾货就优先“照顾”你。
真相:用户的投诉率,退货率都记录在识别系统里,这些数据将作为电商判断你“忍耐力”的参考,退货率低于10%的用户,会收到更多垃圾产品。
货到付款是上帝,先款后货是接盘侠
内幕:先款后货的客户,收到瑕疵品机率是货到付款的3倍,这是大部分电商的潜规则。货到付款的质量问题处理时间是1~2天,先款后货的处理时间是5~6天,电商巧妙利用消费者嫌麻烦心理,将瑕疵产品更多发给先款后货客户,甚至拉长问题处理时间,要不换货,要不售后。退货退钱?先让客服和你“谈谈心”,你就慢慢等着他们反馈给领导吧。
真相:售后时间超过6天是大部分人的“耐心极限”,电商将处理时间设定在耐心临界点,就是为了处理“二手货”,这些尾货全部来源于厂商,供应价低,利润更高用户的投诉率,退货率都记录在识别系统里,这些数据将作为电商判断你“忍耐力”的参考,退货率低于10%的用户,会收到更多垃圾产品。
收货地址,决定给你发什么货
内幕:并不是二三四线城市就一定发假货。新的电商系统能识别收货手机与收货地址所在城市有没有产品专卖店。如果没有,你也没买过同类产品,系统会“放心”分配高仿货给你;如果有专卖店,系统会查询你是否买过同品牌产品。内部消息:使用最新系统售卖高仿货,退货率还不到5%。
真相:不要以为在网上买东西靠运气,事实上电商有精确的数据系统作支撑,该你买到假货,你就绝对买不到真货。
奸商面前别谈隐私
内幕:消费者前脚买完东西,后脚就有骗子电话打上门,购买明细都了解得一清二楚,这是什么原因?问题就出在大数据。订单提交成功后,你的个人数据马上被自动录入系统,上传到电商联盟平台共享,所有电商都能查到你资料,这个过程会经很多人的手,开发公司,数据人员,处处是漏洞。
真相:不要以为有隐私,你的个人资料,消费倾向早已掌握在所有电商手里。通过数据系统就能知道你对假货的反应,能不能识别假货。就像所有银行共享的信用卡黑名单,上了黑名单,所有银行都不同意你的信用卡申请。电商之所有不愿意解决信息泄露问题,是因为他不愿意放弃收集用户数据,没了用户数据做分析,那共享的数据系统就没了参考依据,假货退货率会远高于现在。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21