以大数据思维推动创新发展
贵州在大数据引领产业升级、大数据推动政府转型、大数据服务社会民生等方面积极探索,提炼了贵州发展大数据的核心理念,进行了理念创新,实施了围绕“云上贵州”系统平台的“7+N”云工程建设,推动实现政务数据的“聚、通、用”,在全国率先建设国家大数据综合试验区,进行大数据应用领域的探索与创新,实现了应用创新,探索利用数据的整合应用,实施“数据铁笼”工程,探索实现政务工作的有效监管,实现了围绕大数据的政务治理的创新。在不断地实践与探索过程中,大数据的潜在价值不断地被发掘和应用。
党的十八届五中全会提出的创新、协调、绿色、开放、共享五大发展理念,把创新放在首要位置。面对贵州经济社会发展的现状,贵州创造性地提出发展以大数据为引领的电子信息产业来推动贵州的创新发展,最终实现“走出一条有别于东部、不同于西部其他省份的发展新路”。
以建设国家大数据综合试验区为契机,贵州未来将以大数据思维推动创新发展,一是以大数据推动科技创新,二是以大数据推动政府治理体制创新,三是以大数据推动应用创新与服务创新,四是以大数据推动制度创新。
以大数据推动科技创新,主要是指通过大数据在各行业、各领域的有效应用,推动两个层面的科技创新,推动围绕大数据采集、处理与分析、可视化、安全与隐私保护、交易等方面的理论创新、应用创新和集成创新,围绕贵州的“7+N”云工程,突破云计算和大数据应用过程中的共性关键技术问题;围绕各行业、各领域进行数据融合与业务创新,推动转型升级,企业能否不断积累自己的“数据资产”,有效利用好自己的“数据资产”,推动企业在营销、客户关系管理等方面的创新和业务提升成为未来企业发展和转型升级的必然趋势。
以大数据推动政府治理体制创新,主要是指围绕贵州的“云上贵州”系统平台建设,推动政务数据资源的云上汇聚、共享和应用,进而推动政府治理体制的创新。大数据对促进政府科学决策、加强公共服务和社会管理能力具有巨大帮助。政府战略和政策的制定,有赖于对现实情况的准确把握、对实施进程的跟踪、对执行效果的及时获知,以便科学预测、灵活调整,而大数据的有效应用可以很好地实现这一点,且不是以人的意志为转移的,大数据使决策的基础从局部信息走向全局信息,从定性考量走向定量判断,从滞后反馈到及时预警,从部门分割到信息协同,大数据的思维和手段可以促进政府资源的整合,数据的互通、开放与有效利用,从而有效变革政府治理模式,为政府的科学决策提供有力支撑,最终提升政府的治理能力。
以大数据推动应用创新与服务创新,主要是指通过大数据提升社会领域的应用创新和服务创新,坚持以应用需求和民生服务为导向,推动大数据与社会各领域尤其是民生服务领域的深度融合和应用示范,鼓励满足市场需求的各类社会领域大数据开发利用和模式创新,实施一批大数据社会应用和民生服务的示范工程,支持公共安全、医疗健康、生态环境保护、社保、教育等重点领域和特色产业大数据应用创新与模式创新。在此过程中,充分发挥政府在大数据社会领域应用的导向性作用,发挥市场的主体作用,引导和鼓励社会各方参与,大力推动政府和社会信息资源共建共享和开发利用,形成优势互补、多元参与、开放竞争的发展格局,推动让公众有“体验感”和“满足感”的应用创新和服务创新。
以大数据推动制度创新,主要是指围绕大数据的发展,逐步探索建立适应大数据发展的管理机制、考核机制、资金保障机制、人才培养机制,推动围绕大数据发展的制度创新。探索适应政府信息化变革、推动大数据应用的新的管理机制;建立科学合理、行之有效的考核机制,推动大数据在政府各部门的深入推进与应用;实施科学精准的资金保障机制,立足贵州经济社会发展的现状,科学预算、精准使用大数据建设和发展经费;构建行之有效的人才培养体系,抢占数据科学发展的战略高点,为大数据产业发展提供人才保障。
当前,贵州以“大扶贫”、“大数据”、“大生态”三大战略为主线,大力推动贵州省经济社会的创新发展和跨越式发展,我们应以发展大数据产业为契机,以大数据思维推动在各个领域的创新发展,为贵州省实现弯道取直、跨越发展、同步小康提供强力支撑。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21