R语言中的回归诊断-car包
1、回归诊断的基本方法
opar<-par(no.readOnly=TRUE)
fit <- lm(weight ~ height, data = women)
par(mfrow = c(2, 2))
plot(fit)
par(opar)
为理解这些图形,我们来回顾一下OLS回归的统计假设。
(1)正态性(主要使用QQ图)当预测变量值固定时,因变量成正态分布,则残差值也应该是一个均值为0的正态分布。正态Q-Q图(Normal Q-Q,右上)是在正态分布对应的值下,标准化残差的概率图。若满足正态假设,那么图上的点应该落在呈45度角的直线上;若不是如此,那么就违反了正态性的假设。
(2)独立性 你无法从这些图中分辨出因变量值是否相互独立,只能从收集的数据中来验证。上面的例子中,没有任何先验的理由去相信一位女性的体重会影响另外一位女性的体重。假若你发现数据是从一个家庭抽样得来的,那么可能必须要调整模型独立性的假设。
(3)线性(使用左上角的图,该曲线尽量拟合所有点)
若因变量与自变量线性相关,那么残差值与预测(拟合)值就没有任何系统关联。换句话说,除了白噪声,模型应该包含数据中所有的系统方差。在“残差图与拟合图”Residuals
vs Fitted,左上)中可以清楚的看到一个曲线关系,这暗示着你可能需要对回归模型加上一个二次项。
(4)同方差性(左下角,点随机分布在曲线的周围)
若满足不变方差假设,那么在位置尺度图(Scale-Location
Graph,左下)中,水平线周围的点应该随机分布。该图似乎满足此假设。最后一幅“残差与杠图”(Residuals vs
Leverage,右下)提供了你可能关注的单个观测点的信息。从图形可以鉴别出离群点、高杠杆值点和强影响点
通过看图重新修改模型
newfit <- lm(weight ~ height + I(height^2), data = women[-c(13, 15),])
par(mfrow = c(2, 2))
plot(newfit)
par(opar)
2、使用改进的方法进行
主要使用的car包,进行回归诊断
(1)自变量的正态分布
qqPlot()函数提供了更为精确的正态假设检验方法
library(car)
fit <- lm(Murder ~ Population + Illiteracy + Income +
Frost, data = states)
qqPlot(fit, labels = FALSE, simulate = TRUE, main = "Q-Q Plot")
(2)误差的独立性
durbinWatsonTest(fit)
lag Autocorrelation D-W Statistic p-value
1 -0.2006929 2.317691 0.248
Alternative hypothesis: rho != 0
(3)线性相关性
crPlots(fit, one.page = TRUE, ask = FALSE)
(4)同方差性
1、car包提供了两个有用的函数,可以判断误差方差是否恒定。ncvTest()函数生成一个计分检验,零假设为误差方差不变,备择假设为误差方差随着拟合值水平的变化而变化。
2、spreadLevelPlot()函数创建一个添加了最佳拟合曲线的散点图,展示标准化残差绝对值与拟合值的关系
library(car)
ncvTest(fit)
Non-constant Variance Score Test
Variance formula: ~ fitted.values
Chisquare = 1.746514 Df = 1 p = 0.1863156
满足方差不变 p = 0.1863156
spreadLevelPlot(fit)
3、线性模型假设的综合验证
library(gvlma)
gvmodel <- gvlma(fit)
summary(gvmodel)
Call:
lm(formula = Murder ~ Population + Illiteracy + Income + Frost,
data = states)
Residuals:
Min 1Q Median 3Q Max
-4.7960 -1.6495 -0.0811 1.4815 7.6210
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.235e+00 3.866e+00 0.319 0.7510
Population 2.237e-04 9.052e-05 2.471 0.0173 *
Illiteracy 4.143e+00 8.744e-01 4.738 2.19e-05 ***
Income 6.442e-05 6.837e-04 0.094 0.9253
Frost 5.813e-04 1.005e-02 0.058 0.9541
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 2.535 on 45 degrees of freedom
Multiple R-squared: 0.567, Adjusted R-squared: 0.5285
F-statistic: 14.73 on 4 and 45 DF, p-value: 9.133e-08
ASSESSMENT OF THE LINEAR MODEL ASSUMPTIONS
USING THE GLOBAL TEST ON 4 DEGREES-OF-FREEDOM:
Level of Significance = 0.05
Call:
gvlma(x = fit)
Value p-value Decision
Global Stat 2.7728 0.5965 Assumptions acceptable.
Skewness 1.5374 0.2150 Assumptions acceptable.
Kurtosis 0.6376 0.4246 Assumptions acceptable.
Link Function 0.1154 0.7341 Assumptions acceptable.
Heteroscedasticity 0.4824 0.4873 Assumptions acceptable.
4、多重共线性
如何检测多重共线性
library(car)
vif(fit)
Population Illiteracy Income Frost
1.245282 2.165848 1.345822 2.082547
sqrt(vif(fit)) > 2
Population Illiteracy Income Frost
FALSE FALSE FALSE FALSE
如何解决多重共线性?
逐步回归法(此法最常用的,也最有效)
R语言回归分析中的异常值点的介绍
(1)离群点
如何识别离群点?
1、Q-Q图,落在置信区间带[-2,2]外的点即可被认为是离群点。
2、一个粗糙的判断准则:标准化残差值大于2或者小于2的点可能是离群
3、library(car)
outlierTest(fit) 显示离群点
rstudent unadjusted p-value Bonferonni p
Nevada 3.542929 0.00095088 0.047544
(2)高杠杆值点
它们是由许多异常的预测变量值组合起来的,与响应变量值没有关系
高杠杆值的观测点可通过帽子统计量(hat statistic)判断
hat.plot <- function(fit){
p <- length(coefficients(fit))
n <- length(fitted(fit))
plot(hatvalues(fit), main = "Index Plot of Hat Values")
abline(h = c(2, 3) * p/n, col = "red", lty = 2)
identify(1:n, hatvalues(fit), names(hatvalues(fit)))
}
hat.plot(fit)
(3)强影响点
强影响点,即对模型参数估计值影响有些比例失衡的点。例如,若移除模型的一个观测点时模型会发生巨大的改变,那么你就需要检测一下数据中是否存在强影响点了
cutoff <- 4/(nrow(states) - length(fit$coefficients) - 2)
plot(fit, which = 4, cook.levels = cutoff)
abline(h = cutoff, lty = 2, col = "red")
4、如何对线性模型进行改进?
1、删除观测点;
删除离群点通常可以提高数据集对于正态假设的拟合度,而强影响点会干扰结果,通常也会被删除。删除最大的离群点或者强影响点后,模型需要重新拟合
2、变量变换:
Box-Cox正态变换
library(car)
summary(powerTransform(states$Murder))
library(car)
boxTidwell(Murder ~ Population + Illiteracy, data = states)
3、添加或删除变量;
4、使用其他回归方法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31