SPSS分析技术:无序多元Logistic回归模型;美国总统大选的预测历史及预测模型
在介绍有序多元Logistic回归分析的理论基础时,介绍过该模型公式有一个非常重要的假设,就是自变量对因变量多个类别(因变量是定序数据)的影响程度是相同的。如果因变量有4个水平,那么有序多元逻辑回归分析最终会产生3个回归方程,这些回归方程除了常数项以外,其余的部分都是一样的,这就体现了模型的假设。因为有这个假设的存在,所以做有序多元Logistic回归分析时,可以同时输出平行性检验结果。如果检验结果不通过,那么可以考虑采用无序多元Logistic回归分析。
无序多元Logistic回归分析
无序多元Logistic回归模型主要用于分析因变量是定类型数据的情况,除此之外,如果因变量为有序分类,但是没有通过平行性检验,也可以该模型进行分析。
无序多元Logistic回归模型的分析原理和哑变量的设置逻辑是一样的,都需要在多个水平中定义某一个水平为参照水平(SPSS默认将取值最大的水平定为参照水平),其它水平则与其进行相比,从而建立水平数减1个广义Logit模型(General Logits Model)。例如,假设现在有一个4水平的因变量,取值水平分别定为数值1,2,3,4,初步筛选出k个自变量,那么可以建立以取值为4的水平为参照水平的关于因变量的3个广义Logit模型:
案例分析
2016年的美国总统大选结果让外界大跌眼镜,共和党候选人特朗普在完全不被看好的情况下,击败民主党候选人希拉里,夺得总统大选宝座。民主党和共和党因为历史的原因,支持者的身份有很大的不同。
美国民主党建于1791年,由部分种植园主和与南方奴隶主有联系的企业家组成,当时叫共和党,1794年改为民主共和党,1840年正式称民主党。1861年南北战争结束后民主党一蹶不振,1933年罗斯福利用经济危机引起的人民不满情绪竞选总统获胜并连任四届总统,民主党因而连续执政20年。民主党群众基础主要是劳工、公务员、少数民族和黑人。
美国共和党成立于1854年,由反对奴隶制的东北部工商业主及中西部开发各州的农业企业家代表组成。1860年林肯当选总统,共和党开始执政,并在南北战争中击败南方奴隶主势力平息了内战。1860年至1933年70多年中,除16年外,美国均由共和党执政。该党群众基础主要是郊区和南方的白领工人及年轻人,二战后中产阶级为其新的支持力量。
从上世纪的30年代开始,各种杂志和咨询机构就开始进行美国总统大选预测。期间产生了非常多的预测模型,它们考虑了各种可能影响选民选择的因素。现在有一份1992年美国总统大选前,某小型民调机构根据它们的模型收集到的1847名选民数据,如下图所示。包括了选民的候选人选择、年龄、年龄分组、受教育年限、学历和性别。
分析思路
通过观察自变量信息会发现,受教育年限和最高学历虽然存在信息重叠,但是因为受教育年限不是均匀分布的,它总是集中在取得学历的那年,例如,初中毕业就是9年,高中毕业就是12年,很少人会中途退学,因此7到9、10到12年的数据是非常少的。同时,不同学历的选民,他们选择会有很大不用,因此在本案例中将两个变量纳入分析。本案例的因变量是三个总统候选人,因此要采用无序多元Logistic回归模型来分析。
分析步骤
1、选择菜单【分析】-【回归】-【多元Logistic】,将候选人选为因变量,点击参考类别,将最后一个类别选为参考类别,这里最后一个类别是克林顿。将分类型自变量最高学历和性别选入因子,将年龄和受教育年限选入协变量。
2、点击保存按钮,将以下选项都选中,结果输出时,将会产生6个新的变量。分别是3个类别的预测概率、预测类别、预测类别概率和实际类别概率。
3、点击确定,输出结果。
结果解释
1、个案处理摘要;这个不需要解释,该表格输出选入分类型变量的类型以及各种类型包含的个案数及比例。
2、模型拟合信息;显著性小于0.01,说明模型中至少有一个自变量对因变量有显著影响,回归系数与0有显著性差异。结果共输出了三个伪R方值,都非常的小,说明模型的拟合结果不好,但是这里需要强调,逻辑回归的伪R方值通常都是较低的,不能完全以伪R方值做出模型拟合效果很差的结论,还应该集合其它结果来看。
3、SPSS对此给出了似然比检验结果,检验的结果显示是除受教育年限以外,其它三个自变量均有统计学意义,也就是说对因变量的概率有显著影响。
4、回归系数表格;从显著性可以知道每个自变量在每个回归方程中,对因变量是否有显著性的影响。这里需要强调,分类变量在这里以哑变量的形式存在,以取值最高的类别为参考类别,在所有哑变量中,只要有一个哑变量有统计学意义,就需要将所有哑变量纳入回归方程中,哑变量需要同进退。
可以根据上面的回归系数写出两个无序多元Logistic回归模型:
5、预测分类表格;从预测分类结果来看,本案例产生的无序多元逻辑回归模型的综合预测准确率仅为50%,只有克林顿的预测正确率高于70%,说明该模型的拟合效果是非常差的。还需要对模型进行有效的改进。
从以上结果来看,总统大选结果预测模型需要考虑的因素是非常多和复杂的,这也是为什么每家结构都会有自己的预测结果。除了预测模型,样本数据的采集方式,采集人群同样会对结果产生极大的影响。这里给大家讲一个非常有趣的预测故事:在1936年美国大选中,民主党候选人罗斯福对战共和党候选人阿尔夫·兰登。《文学文摘》此前准确预测过5次总统选举结果。1936年大选,《文学文摘》当年邮寄出1000万份问卷,回收到230万份,样本数量很大。经过分析后,他们预测共和党候选人阿尔夫·兰登会战胜罗斯福当选总统。结果却是罗斯福获得了压倒性的胜利,在48个州中胜出46个。原来,《文学文摘》是按照电话号码本选出的这1000万调查对象,但在当年的美国,能装得起电话的往往都是较富裕阶层、持保守立场的共和党选民,而支持罗斯福的广大工人群体基本被排除在调查范围之外,由此在样本上造成了显著偏差。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06在备考 CDA 考试的漫漫征途上,拥有一套契合考试大纲的优质模拟题库,其重要性不言而喻。它恰似黑夜里熠熠生辉的启明星,为每一 ...
2025-03-05“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关 ...
2025-03-04以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-04在现代商业环境中,数据分析师的角色愈发重要。数据分析师通过解读数据,帮助企业做出更明智的决策。因此,考取数据分析师证书成为了许多人提升职业竞争力的选择。本文将详细介绍考取数据分析师证书的过程,包括了解证书种类和 ...
2025-03-03在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2025-03-03数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-03-032025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-03-03大数据分析师培训旨在培养学员掌握大数据分析的基础知识、技术及应用能力,以适应企业对数据分析人才的需求。根据不同的培训需求 ...
2025-03-03小伙伴们,最近被《哪吒2》刷屏了吧!这部电影不仅在国内掀起观影热潮,还在全球范围内引发了关注,成为中国电影崛起的又一里程 ...
2025-03-03以下的文章内容来源于张彦存老师的专栏,如果您想阅读专栏《Python 数据可视化 18 讲(PyEcharts、Matplotlib、Seaborn)》,点 ...
2025-02-28最近,国产AI模型DeepSeek爆火,其创始人梁文峰走进大众视野。《黑神话:悟空》制作人冯骥盛赞DeepSeek为“国运级别的科技成果” ...
2025-02-271.统计学简介 听说你已经被统计学劝退,被Python唬住……先别着急划走,看完这篇再说! 先说结论,大多数情况下的学不会都不是知 ...
2025-02-27“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩稳定, ...
2025-02-26在数据分析工作中,你可能经常遇到这样的问题: 从浏览到消费的转化率一直很低,那到底该优化哪里呢? 如果你要投放广告该怎么 ...
2025-02-25近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的,尤 ...
2025-02-25挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-25在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-25