SPSS分析技术:无序多元Logistic回归模型;美国总统大选的预测历史及预测模型
在介绍有序多元Logistic回归分析的理论基础时,介绍过该模型公式有一个非常重要的假设,就是自变量对因变量多个类别(因变量是定序数据)的影响程度是相同的。如果因变量有4个水平,那么有序多元逻辑回归分析最终会产生3个回归方程,这些回归方程除了常数项以外,其余的部分都是一样的,这就体现了模型的假设。因为有这个假设的存在,所以做有序多元Logistic回归分析时,可以同时输出平行性检验结果。如果检验结果不通过,那么可以考虑采用无序多元Logistic回归分析。
无序多元Logistic回归分析
无序多元Logistic回归模型主要用于分析因变量是定类型数据的情况,除此之外,如果因变量为有序分类,但是没有通过平行性检验,也可以该模型进行分析。
无序多元Logistic回归模型的分析原理和哑变量的设置逻辑是一样的,都需要在多个水平中定义某一个水平为参照水平(SPSS默认将取值最大的水平定为参照水平),其它水平则与其进行相比,从而建立水平数减1个广义Logit模型(General Logits Model)。例如,假设现在有一个4水平的因变量,取值水平分别定为数值1,2,3,4,初步筛选出k个自变量,那么可以建立以取值为4的水平为参照水平的关于因变量的3个广义Logit模型:
案例分析
2016年的美国总统大选结果让外界大跌眼镜,共和党候选人特朗普在完全不被看好的情况下,击败民主党候选人希拉里,夺得总统大选宝座。民主党和共和党因为历史的原因,支持者的身份有很大的不同。
美国民主党建于1791年,由部分种植园主和与南方奴隶主有联系的企业家组成,当时叫共和党,1794年改为民主共和党,1840年正式称民主党。1861年南北战争结束后民主党一蹶不振,1933年罗斯福利用经济危机引起的人民不满情绪竞选总统获胜并连任四届总统,民主党因而连续执政20年。民主党群众基础主要是劳工、公务员、少数民族和黑人。
美国共和党成立于1854年,由反对奴隶制的东北部工商业主及中西部开发各州的农业企业家代表组成。1860年林肯当选总统,共和党开始执政,并在南北战争中击败南方奴隶主势力平息了内战。1860年至1933年70多年中,除16年外,美国均由共和党执政。该党群众基础主要是郊区和南方的白领工人及年轻人,二战后中产阶级为其新的支持力量。
从上世纪的30年代开始,各种杂志和咨询机构就开始进行美国总统大选预测。期间产生了非常多的预测模型,它们考虑了各种可能影响选民选择的因素。现在有一份1992年美国总统大选前,某小型民调机构根据它们的模型收集到的1847名选民数据,如下图所示。包括了选民的候选人选择、年龄、年龄分组、受教育年限、学历和性别。
分析思路
通过观察自变量信息会发现,受教育年限和最高学历虽然存在信息重叠,但是因为受教育年限不是均匀分布的,它总是集中在取得学历的那年,例如,初中毕业就是9年,高中毕业就是12年,很少人会中途退学,因此7到9、10到12年的数据是非常少的。同时,不同学历的选民,他们选择会有很大不用,因此在本案例中将两个变量纳入分析。本案例的因变量是三个总统候选人,因此要采用无序多元Logistic回归模型来分析。
分析步骤
1、选择菜单【分析】-【回归】-【多元Logistic】,将候选人选为因变量,点击参考类别,将最后一个类别选为参考类别,这里最后一个类别是克林顿。将分类型自变量最高学历和性别选入因子,将年龄和受教育年限选入协变量。
2、点击保存按钮,将以下选项都选中,结果输出时,将会产生6个新的变量。分别是3个类别的预测概率、预测类别、预测类别概率和实际类别概率。
3、点击确定,输出结果。
结果解释
1、个案处理摘要;这个不需要解释,该表格输出选入分类型变量的类型以及各种类型包含的个案数及比例。
2、模型拟合信息;显著性小于0.01,说明模型中至少有一个自变量对因变量有显著影响,回归系数与0有显著性差异。结果共输出了三个伪R方值,都非常的小,说明模型的拟合结果不好,但是这里需要强调,逻辑回归的伪R方值通常都是较低的,不能完全以伪R方值做出模型拟合效果很差的结论,还应该集合其它结果来看。
3、SPSS对此给出了似然比检验结果,检验的结果显示是除受教育年限以外,其它三个自变量均有统计学意义,也就是说对因变量的概率有显著影响。
4、回归系数表格;从显著性可以知道每个自变量在每个回归方程中,对因变量是否有显著性的影响。这里需要强调,分类变量在这里以哑变量的形式存在,以取值最高的类别为参考类别,在所有哑变量中,只要有一个哑变量有统计学意义,就需要将所有哑变量纳入回归方程中,哑变量需要同进退。
可以根据上面的回归系数写出两个无序多元Logistic回归模型:
5、预测分类表格;从预测分类结果来看,本案例产生的无序多元逻辑回归模型的综合预测准确率仅为50%,只有克林顿的预测正确率高于70%,说明该模型的拟合效果是非常差的。还需要对模型进行有效的改进。
从以上结果来看,总统大选结果预测模型需要考虑的因素是非常多和复杂的,这也是为什么每家结构都会有自己的预测结果。除了预测模型,样本数据的采集方式,采集人群同样会对结果产生极大的影响。这里给大家讲一个非常有趣的预测故事:在1936年美国大选中,民主党候选人罗斯福对战共和党候选人阿尔夫·兰登。《文学文摘》此前准确预测过5次总统选举结果。1936年大选,《文学文摘》当年邮寄出1000万份问卷,回收到230万份,样本数量很大。经过分析后,他们预测共和党候选人阿尔夫·兰登会战胜罗斯福当选总统。结果却是罗斯福获得了压倒性的胜利,在48个州中胜出46个。原来,《文学文摘》是按照电话号码本选出的这1000万调查对象,但在当年的美国,能装得起电话的往往都是较富裕阶层、持保守立场的共和党选民,而支持罗斯福的广大工人群体基本被排除在调查范围之外,由此在样本上造成了显著偏差。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21