SPSS分析技术:无序多元Logistic回归模型;美国总统大选的预测历史及预测模型
在介绍有序多元Logistic回归分析的理论基础时,介绍过该模型公式有一个非常重要的假设,就是自变量对因变量多个类别(因变量是定序数据)的影响程度是相同的。如果因变量有4个水平,那么有序多元逻辑回归分析最终会产生3个回归方程,这些回归方程除了常数项以外,其余的部分都是一样的,这就体现了模型的假设。因为有这个假设的存在,所以做有序多元Logistic回归分析时,可以同时输出平行性检验结果。如果检验结果不通过,那么可以考虑采用无序多元Logistic回归分析。
无序多元Logistic回归分析
无序多元Logistic回归模型主要用于分析因变量是定类型数据的情况,除此之外,如果因变量为有序分类,但是没有通过平行性检验,也可以该模型进行分析。
无序多元Logistic回归模型的分析原理和哑变量的设置逻辑是一样的,都需要在多个水平中定义某一个水平为参照水平(SPSS默认将取值最大的水平定为参照水平),其它水平则与其进行相比,从而建立水平数减1个广义Logit模型(General Logits Model)。例如,假设现在有一个4水平的因变量,取值水平分别定为数值1,2,3,4,初步筛选出k个自变量,那么可以建立以取值为4的水平为参照水平的关于因变量的3个广义Logit模型:
案例分析
2016年的美国总统大选结果让外界大跌眼镜,共和党候选人特朗普在完全不被看好的情况下,击败民主党候选人希拉里,夺得总统大选宝座。民主党和共和党因为历史的原因,支持者的身份有很大的不同。
美国民主党建于1791年,由部分种植园主和与南方奴隶主有联系的企业家组成,当时叫共和党,1794年改为民主共和党,1840年正式称民主党。1861年南北战争结束后民主党一蹶不振,1933年罗斯福利用经济危机引起的人民不满情绪竞选总统获胜并连任四届总统,民主党因而连续执政20年。民主党群众基础主要是劳工、公务员、少数民族和黑人。
美国共和党成立于1854年,由反对奴隶制的东北部工商业主及中西部开发各州的农业企业家代表组成。1860年林肯当选总统,共和党开始执政,并在南北战争中击败南方奴隶主势力平息了内战。1860年至1933年70多年中,除16年外,美国均由共和党执政。该党群众基础主要是郊区和南方的白领工人及年轻人,二战后中产阶级为其新的支持力量。
从上世纪的30年代开始,各种杂志和咨询机构就开始进行美国总统大选预测。期间产生了非常多的预测模型,它们考虑了各种可能影响选民选择的因素。现在有一份1992年美国总统大选前,某小型民调机构根据它们的模型收集到的1847名选民数据,如下图所示。包括了选民的候选人选择、年龄、年龄分组、受教育年限、学历和性别。
分析思路
通过观察自变量信息会发现,受教育年限和最高学历虽然存在信息重叠,但是因为受教育年限不是均匀分布的,它总是集中在取得学历的那年,例如,初中毕业就是9年,高中毕业就是12年,很少人会中途退学,因此7到9、10到12年的数据是非常少的。同时,不同学历的选民,他们选择会有很大不用,因此在本案例中将两个变量纳入分析。本案例的因变量是三个总统候选人,因此要采用无序多元Logistic回归模型来分析。
分析步骤
1、选择菜单【分析】-【回归】-【多元Logistic】,将候选人选为因变量,点击参考类别,将最后一个类别选为参考类别,这里最后一个类别是克林顿。将分类型自变量最高学历和性别选入因子,将年龄和受教育年限选入协变量。
2、点击保存按钮,将以下选项都选中,结果输出时,将会产生6个新的变量。分别是3个类别的预测概率、预测类别、预测类别概率和实际类别概率。
3、点击确定,输出结果。
结果解释
1、个案处理摘要;这个不需要解释,该表格输出选入分类型变量的类型以及各种类型包含的个案数及比例。
2、模型拟合信息;显著性小于0.01,说明模型中至少有一个自变量对因变量有显著影响,回归系数与0有显著性差异。结果共输出了三个伪R方值,都非常的小,说明模型的拟合结果不好,但是这里需要强调,逻辑回归的伪R方值通常都是较低的,不能完全以伪R方值做出模型拟合效果很差的结论,还应该集合其它结果来看。
3、SPSS对此给出了似然比检验结果,检验的结果显示是除受教育年限以外,其它三个自变量均有统计学意义,也就是说对因变量的概率有显著影响。
4、回归系数表格;从显著性可以知道每个自变量在每个回归方程中,对因变量是否有显著性的影响。这里需要强调,分类变量在这里以哑变量的形式存在,以取值最高的类别为参考类别,在所有哑变量中,只要有一个哑变量有统计学意义,就需要将所有哑变量纳入回归方程中,哑变量需要同进退。
可以根据上面的回归系数写出两个无序多元Logistic回归模型:
5、预测分类表格;从预测分类结果来看,本案例产生的无序多元逻辑回归模型的综合预测准确率仅为50%,只有克林顿的预测正确率高于70%,说明该模型的拟合效果是非常差的。还需要对模型进行有效的改进。
从以上结果来看,总统大选结果预测模型需要考虑的因素是非常多和复杂的,这也是为什么每家结构都会有自己的预测结果。除了预测模型,样本数据的采集方式,采集人群同样会对结果产生极大的影响。这里给大家讲一个非常有趣的预测故事:在1936年美国大选中,民主党候选人罗斯福对战共和党候选人阿尔夫·兰登。《文学文摘》此前准确预测过5次总统选举结果。1936年大选,《文学文摘》当年邮寄出1000万份问卷,回收到230万份,样本数量很大。经过分析后,他们预测共和党候选人阿尔夫·兰登会战胜罗斯福当选总统。结果却是罗斯福获得了压倒性的胜利,在48个州中胜出46个。原来,《文学文摘》是按照电话号码本选出的这1000万调查对象,但在当年的美国,能装得起电话的往往都是较富裕阶层、持保守立场的共和党选民,而支持罗斯福的广大工人群体基本被排除在调查范围之外,由此在样本上造成了显著偏差。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11