人工智能创新有望解决大数据难题
我经常遇到着迷于深度学习、压缩分类和自动驾驶汽车的数据科学团队,它们渴望运用当下流行的算法。比如说,我最近在与一家大型金融机构合作,共同加强其网络安全;我们甚至还没有开始基本的监控,我团队中的一名数据科学家就在谈论K-均值聚类和神经网络。
我们要始终记得先要了解问题和机会,然后运用正确的系统或算法。有时候,自学习神经网络可能是最佳的选择;而有时候,你得采用经典的技术:专家系统。
专家系统是一种基于规则的引擎,它基于专家们的集体智慧。它是人工智能(AI)领域历史最悠久的创新之一,实际应用可以追溯到上世纪70年代。
数据科学界经常开玩笑说,专家系统好比是过时的恐龙,它们很有意思,但是就现代应用而言不切实际。我完全不同意,人工智能领域没有哪一项进步完全取 代得了专家系统的功能和效用。此外,由于专家系统已存在相当一段长的时间,你可以运用久经考验的最佳实践。下面是使用专家系统、让你开始入手的六个最佳实 践。
1. 征集需求
构建一套专家系统最困难的部分就是,与实际的专家们见面讨论。与任何最终用户见面讨论已够困难了,而你项目需要的那些专家是非常特殊的最终用户,每个人都想要与之讨论。在征集需求之前,要征得管理层的同意,批准你与专家们见面讨论。
比如说,我在接触一家跨国交易处理公司时,整个公司只有五六个人知道交易网络的内部结构。如果你没有让管理层承诺专家到时抽出时间,那么你休想与他们谈论15分钟以上。
2. 进行分析
尽量少花时间在分析上。忍住对专家访谈进行定性分析的冲动,这没有必要。
专家系统旨在进行自己的分析。艰苦的工作在分析中并不多,难就难在框架的搭建和微调上。在这方面,它类似神经网络。你的任务就是告诉系统如何思考,然后让系统为自己处理思考任务。
3. 设计框架
将冗余性(verbosity)设计到你的专家系统框架中。专家系统由两个基本部分组成:知识库和推理引擎。知识库负责存储关于设计领域的事实,而推理引擎负责将归纳(正向链)推理和演绎(反向链)推理运用到知识库中的事实。
这两个系统都必须精心设计,让你可以了解专家系统在想什么。你需要非常详细地了解专家系统知道的情况,以及它如何得出结论。先进系统更侧重于采用自然语言界面――这是我支持的一个最佳实践。
4. 开发系统
开发速度要快。与分析一样,如果你在开发方面花了大量的时间,那么做法不当。你唯一要开发的东西就是框架(知识库和推理引擎)。暂时尽量避免编写程序代码。
然而,要从长计议。在程序代码可以取代框架推理的地方构建接口。虽然将程序代码换成基于框架的推理有悖于大众的看法,但是一旦规则得到了全面审查,它就是你专家系统的一种实际延伸。程序代码让你有机会大大加快执行,这对许多应用程序(比如嵌入式系统)来说更切实际。
5. 训练系统
不要低估了合理训练专家系统所需要投入的时间、精力和专家数量。我使用“训练”这个词很宽泛――专家系统严格上来说并不是一种学习系统。但是,决定 专家系统成败的却是领域知识以及它如何进行推理。专家必须是这个过程的一部分,因为一旦馈送了需求征集阶段收集的信息,专家就需要微调引擎。
这时候,情况变得有意思起来。让一个专家解释过程原本够难的,更不用说让一组专家就合适的过程达成共识了。到头来这是值得的,但是勤奋和耐心在这个阶段会给你带来好处。
6. 改进系统
请专家委员会做以后的审查。一旦你的专家系统部署到位,很难长时间留住你的专家;他们需要定期审查实际的结论,确保你的系统仍尽到作为专家的责任。 事先获得他们的这种承诺。就像你在需求征集阶段那样征得管理层的同意――可以这么说,专家系统稳定下来后,至少每年每季度你需要一次得到他们的关注。在你 开始动手之前,确保每个人对这个想法意见一致。
结束语
尽管种种新奇的系统和算法涌入数据科学界,但使用一种有几十年历史,并久经考验的解决方案:专家系统根本不会错。别因为设计的简洁性而误以为它过时或无效,事实恰恰相反。
只要你能找到合适的专家,就可以立即搭建起一套专家系统;与此同时,其他数据科学家仍在为压缩分类绞尽脑汁。掌握了这里给出的几个要点,以及你自己汲取的经验教训,你可能自己都没意识到,就成了专家系统的专业人士。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14