变量选择之SCAD算法
本文提出了一种用于同时达到选择变量和预测模型系数的目的的方法——SCAD。这种方法的罚函数是对称且非凹的,并且可处理奇异阵以产生稀疏解。此外,本文提出了一种算法用于优化对应的带惩罚项的似然函数。这种方法具有广泛的适用性,可以应用于广义线性模型,强健的回归模型。借助于波和样条,还可用于非参数模型。更进一步地,本文证明该方法具有Oracle性质。模拟的结果显示该方法相比主流的变量选择模型具有优势。并且,模型的预测误差公式显示,该方法实用性较强。
SCAD的理论理解
在总结了现有模型的一些缺点之后,本文提出构造罚函数的一些目标:
罚函数是奇异的(singular)
连续地压缩系数
对较大的系数产生无偏的估计
SCAD模型的Oracle性质,使得它的预测效果跟真实模型别无二致。
并且,这种方法可以应用于高维非参数建模。
SCAD的目标函数如下:
SCAD的罚函数与$theta$的(近似)关系如下图所示。
可见,罚函数可以用二阶泰勒展开逼近。
Hard Penality,lasso,SCAD的系数压缩情况VS系数真实值的情况如下图所示。
可以看到,lasso压缩系数是始终有偏的,Hard penality是无偏的,但压缩系数不连续。而SCAD既能连续的压缩系数,也能在较大的系数取得渐近无偏的估计。
这使得SCAD具有Oracle性质。
SCAD的缺点
模型形式过于复杂
迭代算法运行速度较慢
在low noise level的情况下表现较优,但在high noise level的情况下表现较差。
SCAD的实现
SCAD迭代公式
SCAD的目标函数如下:
时,罚函数可以用二阶泰勒展开逼近。
从而,有如下迭代公式:
根据以上公式,代入迭代步骤,即可实现算法。
SCAD的R实现
##------数据模拟--------
library(MASS)
##mvrnorm()
##定义一个产生多元正态分布的随机向量协方差矩阵
Simu_Multi_Norm<-function(x_len, sd = 1, pho = 0.5){
#初始化协方差矩阵
V <- matrix(data = NA, nrow = x_len, ncol = x_len)
#mean及sd分别为随机向量x的均值和方差
#对协方差矩阵进行赋值pho(i,j) = pho^|i-j|
for(i in 1:x_len){ ##遍历每一行
for(j in 1:x_len){ ##遍历每一列
V[i,j] <- pho^abs(i-j)
}
}
V<-(sd^2) * V
return(V)
}
##产生模拟数值自变量X
set.seed(123)
X<-mvrnorm(n = 200, mu = rep(0,10), Simu_Multi_Norm(x_len = 10,sd = 1, pho = 0.5))
##产生模拟数值:响应变量y
beta<-c(1,2,0,0,3,0,0,0,-2,0)
#alpha<-0
#prob<-exp(alpha + X %*% beta)/(1+exp(alpha + X %*% beta))
prob<-exp( X %*% beta)/(1+exp( X %*% beta))
y<-rbinom(n = 200, size = 1,p = prob)
##产生model matrix
mydata<-data.frame(X = X, y = y)
#X<-model.matrix(y~., data = mydata)
##包含截矩项的系数
#b_real<-c(alpha,beta)
b_real<-beta
########----定义惩罚项相关的函数-----------------
##定义惩罚项
####运行发现,若lambda设置为2,则系数全被压缩为0.
####本程序根据rcvreg用CV选出来的lambda设置一个较为合理的lambda。
p_lambda<-function(theta,lambda = 0.025){
p_lambda<-sapply(theta, function(x){
if(abs(x)< lambda){
return(lambda^2 - (abs(x) - lambda)^2)
}else{
return(lambda^2)
}
}
)
return(p_lambda)
}
##定义惩罚项导数
p_lambda_d<-function(theta,a = 3.7,lambda = 0.025){
if(abs(theta) > lambda){
if(a * lambda > theta){
return((a * lambda - theta)/(a - 1))
}else{
return(0)
}
}else{
return(lambda)
}
}
# ##当beta_j0不等于0,定义惩罚项导数近似
# p_lambda_d_apro<-function(beta_j0,beta_j,a = 3.7, lambda = 2){
# return(beta_j * p_lambda_d(beta = beta_j0,a = a, lambda = lambda)/abs(beta_j0))
# }
#
#
# ##当beta_j0 不等于0,指定近似惩罚项,使用泰勒展开逼近
# p_lambda_apro<-function(beta_j0,beta_j,a = 3.7, lambda = 2){
# if(abs(beta_j0)< 1e-16){
# return(0)
# }else{
# p_lambda<-p_lambda(theta = beta_j0, lambda = lambda) +
# 0.5 * (beta_j^2 - beta_j0^2) * p_lambda_d(theta = beta_j0, a = a, lambda = lambda)/abs(beta_j0)
# }
# }
#define the log-likelihood function
loglikelihood_SCAD<-function(X, y, b){
linear_comb<-as.vector(X %*% b)
ll<-sum(y*linear_comb) + sum(log(1/(1+exp(linear_comb)))) - nrow(X)*sum(p_lambda(theta = b))
return (ll)
}
##初始化系数
#b0<-rep(0,length(b_real))
#b0<- b_real+rnorm(length(b_real), mean = 0, sd = 0.1)
##将无惩罚时的优化结果作为初始值
b.best_GS<-b.best
b0<-b.best_GS
##b1用于记录更新系数
b1<-b0
##b.best用于存放历史最大似然值对应系数
b.best_SCAD<-b0
# the initial value of loglikelihood
ll.old<-loglikelihood_SCAD(X = X,y = y, b = b0)
# initialize the difference between the two steps of theta
diff<-1
#record the number of iterations
iter<-0
#set the threshold to stop iterations
epsi<-1e-10
#the maximum iterations
max_iter<-100000
#初始化一个列表用于存放每一次迭代的系数结果
b_history<-list(data.frame(b0))
#初始化列表用于存放似然值
ll_list<-list(ll.old)
#######-------SCAD迭代---------
while(diff > epsi & iter < max_iter){
for(j in 1:length(b_real)){
if(abs(b0[j]) < 1e-06){
next()
}else{
#线性部分
linear_comb<-as.vector(X %*% b0)
#分子
nominator<-sum(y*X[,j] - X[,j] * exp(linear_comb)/(1+exp(linear_comb))) +
nrow(X)*b0[j]*p_lambda_d(theta = b0[j])/abs(b0[j])
#分母,即二阶导部分
denominator<- -sum(X[,j]^2 * exp(linear_comb)/(1+exp(linear_comb))^2) +
nrow(X)*p_lambda_d(theta = b0[j])/abs(b0[j])
#2-(3) :更新b0[j]
b0[j]<-b0[j] - nominator/denominator
#2-(4)
if(abs(b0[j]) < 1e-06){
b0[j] <- 0
}
# #更新似然值
# ll.new<- loglikelihood_SCAD(X = X, y = y, b = b0)
#
#
#
# #若似然值有所增加,则将当前系数保存
# if(ll.new > ll.old){
# #更新系数
# b.best_SCAD[j]<-b0[j]
# }
#
# #求差异
# diff<- abs((ll.new - ll.old)/ll.old)
# ll.old <- ll.new
# iter<- iter+1
# b_history[[iter]]<-data.frame(b0)
# ll_list[[iter]]<-ll.old
# ##当达到停止条件时,跳出循环
# if(diff < epsi){
# break
# }
#
}
}
#更新似然值
ll.new<- loglikelihood_SCAD(X = X, y = y, b = b0)
#若似然值有所增加,则将当前系数保存
if(ll.new > ll.old){
#更新系数
b.best_SCAD<-b0
}
#求差异
diff<- abs((ll.new - ll.old)/ll.old)
ll.old <- ll.new
iter<- iter+1
b_history[[iter]]<-data.frame(b0)
ll_list[[iter]]<-ll.old
}
b_hist<-do.call(rbind,b_history)
#b_hist
ll_hist<-do.call(rbind,ll_list)
#ll_hist
#
iter
##
ll.best<-max(ll_hist)
ll.best
##
b.best_SCAD
##对比
cbind(coeff_glm,b.best,b.best_SCAD,b_real)
##----------ncvreg验证-----------
library(ncvreg)
my_ncvreg<-ncvreg(X,y,family = c("binomial"),penalty = c("SCAD"),lambda = 2)
my_ncvreg$beta
my_ncvreg<-ncvreg(X,y,family = c("binomial"),penalty = c("SCAD"))
summary(my_ncvreg)
my_ncvreg$beta
###用cv找最优的lambda
scad_cv<-cv.ncvreg(X,y,family = c("binomial"),penalty='SCAD')
scad_cv$lambda.min
mySCAD=ncvreg(X,y,family = c("binomial"),penalty='SCAD',lambda=scad_cv$lambda.min)
summary(mySCAD)
ncv_SCAD<-mySCAD$beta[-1]
##对比
myFinalResults<-cbind(无惩罚项回归=coeff_glm, GS迭代 = b.best,
GS_SCAD迭代 = b.best_SCAD, ncvreg = ncv_SCAD,真实值 = b_real)
save(myFinalResults,file = "myFinalResults.rda")
想深入学习统计学知识,为数据分析筑牢根基?那快来看看统计学极简入门课程!
学习入口:https://edu.cda.cn/goods/show/3386?targetId=5647&preview=0
课程由专业数据分析师打造,完全免费,60 天有效期且随到随学。它用独特思路讲重点,从数据种类到统计学体系,内容通俗易懂。学完它,能让你轻松入门统计学,还能提升数据分析能力。赶紧点击链接开启学习,让自己在数据领域更上一层楼!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10