SPSS分析技术:典型相关分析;化繁为简,典型相关分析帮助分析者理清思路
之前介绍过的相关分析有两个变量之间的线性相关关系,用的是简单相关系数r;还有复相关系数,用来表示一个变量与多个变量组成的整体之间的线性相关关系;很多人会问,如果想研究两组变量之间的相关关系,该使用什么方法呢?今天介绍的典型相关分析就是用于解决这个问题的分析方法。
在实际生活当中,关于两组变量之间的相关关系研究很多。例如,某个城市的经济发展水平(GDP、货物周转量、生产建设投资等)与居民生活水平(居民人均年收入、居民财产性收入、恩格尔系数等)间的相关关系;大学生毕业时的成绩(各种科目成绩)和入学时成绩的相关关系;公司内不同职位与员工工作满意度之间的相关关系;领导者的领导能力与情绪智力的相关关系等。典型相关分析在实证研究中有广泛的运用,常常被作为结构方程模型研究的基础步骤。
上方左图是典型相关分析的结果展示图,这和右边的拔河图有异曲同工之处。两个环境中的每个参与者(变量)都是决定结果的因子。
典型相关关系
学习过前面介绍的因子分析的朋友应该很容易想到:是否能够从两组变量中提取公因子,然后用公因子之间的线性相关关系表示两组变量之间的相关关系呢?如果能想到这一点,说明已经拥有知识点拓展和触类旁通的数据分析能力。典型相关分析就是借用了主成分分析的分析逻辑,通过原始变量的线性组合,找到一个或几个综合变量来替代原始变量,从而将两组原始变量的相关关系研究转换成少数几对综合变量的相关关系研究。
典型相关分析首先对两组变量进行线性组合,找到一对综合变量,使这对综合变量具有最大相关性;然后再通过线性组合找出第二对综合变量,它们之间的相关关系会小于第一对综合变量;重复以上操作,直到两组变量的数据信息提取完成为止。提取的综合变量被称为典型变量或典则变量,它们之间的相关系数称为典型相关系数。与主成分分析相似,只需提取少数几对综合变量就可以概括两组变量的数据信息。典型相关分析与因子分析虽然都是通过原始变量的线性组合实现数据信息的浓缩,但是二者还是有不同的,不同之处在于变量线性组合的标准不一样。
因子分析的目的是简化分析局面。基于一组变量的相关关系,用少数几个公因子代替整个变量组的信息(数据的变异),实现变量降维,简化数据分析局面。因此,因子分析在做原始变量线性组合时,寻找公因子的标准是数据变异或波动最大的方向。而典型相关分析的目的是研究两组变量之间的相关关系,因此在做原始变量的线性组合时(提取公因子),考虑的重点在于寻找相关关系最强的典型变量对,简化两组变量之间错综复杂的相关关系网。
案例分析
我们国家是个人口大国,最近一次人口普查结果显示我们国家的人口数达到13.3亿人,农村人口数达到50.32%,因此提高农村居民的生活水平一直以来都是国家管理的重要内容。农村居民的收入和支出能够很好地反映农村居民的生活水平。现在有一份数据,收集了全国30个省市自治区直辖市的农村居民收入和支出情况,包括四项收入数据和8项支出数据:分别是劳动收入(X1)、经营收入(X2)、转移收入(X3)、财产收入(X4);食品支出(Y1)、衣着支出(Y2)、居住支出(Y3)、家庭设备和服务支出(Y4)、医疗保健支出(Y5)、交通通讯支出(Y6)、文教娱乐支出(Y7)、其它支出(Y8)。SPSS数据如下图所示:
操作须知
SPSS没有为典型相关分析设置专门的操作菜单,只提供了一份名为Canonical correlation.sps的宏程序文件,这个文件存放在SPSS安装文件夹\Samples文件夹内。只需在使用时调用,并输入参数语句即可调用输出结果。
分析步骤
点击菜单【文件】-【新建】-【数据】,跳出语法编辑器窗口,输入以下内容。点击确定,输出结果。
结果解释
1、相关系数矩阵;结果输出了三个相关系数矩阵,分别是第一组变量、第二组变量、第一组与第二组之间的相关系数矩阵。变量线性组合的基础就是相关系数矩阵。从前两个相关系数矩阵可以发现,两组变量内部,变量之间的相关系数都非常大,说明它们反映的收入和支出因素是类似的,所以不能很好的反映影响农民收入和支出水平的整体情况。
2、线性相关系数及显著性检验。本案例中提取了4对典型变量(每组变量提取4个公因子),这四对变量之间的相关系数依次降低,从0.980减少到0.561。显著性检验结果显示只有前面两对典型变量的相关系数有统计学意义。
3、典型变量系数;下面有四个表格,第一行的两个表是第一组变量抽取典型变量的结果,作图使用标准化的原始变量数据,右图直接使用原始变量数据;第二行的两个表格则是第二组变量抽取典型变量的结果。根据这些表格的数据可以写出典型变量的计算公式。
第二步的典型变量相关系数的检验结果显示,只有前面两对典型变量的相关系数有统计学意义,U1与V1的相关系数为0.980,U2与V2的相关系数为0.908,因此下面只写出这两对典型变量由标准化数据组成的计算公式:
可以发现,因为两组变量的系数很多都是负的,所以这两对典型变量的现实含义不好解释,原因就在于前面提到的两组变量内部的相关关系太强,无法表示农村居民收入的综合情况。本案例数据建立的典型相关模型的效果很差,应该重新选择能够充分反映农村居民收入水平的变量。
4、相关系数结果;下图四个表是相关系数表,第一列是本组变量与本组产生的典型变量的相关系数;第二列是本组变量与另一组变量产生的典型变量之间的相关系数。
根据相关系数数据,可以做出两对典型变量的相关系数结构图,由于作图的方式是一样的,因此用第一对典型变量为例进行说明。从结构图同样可以知道,四个收入变量与公因子U1的相关系数都是负数,而8个支出变量与公因子V1的相关系数也都为负数,同样说明了本案例的典型相关模型效果很差,不能用现实含义来解释。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13