大步跨入“大数据”时代
发微博、写博客、浏览网页、拨打电话、看病、坐火车……这些都是我们生活中常做的事。然而,似乎很少有人注意到这些行为会留下“痕迹”。事实上,在与互联网、政府、信息系统等的交互中,我们创造了成千上万、甚至上亿的数据,日积月累,这个数量越来越庞大,庞大到传统的数据库和基础架构根本无法及时处理、管理和分析这些数据集,于是,“大数据”应运而生。
近年来,“大数据(Big Data)”一词快速升温,成为了IT行业争相传诵的热门话题。最早提出“大数据”时代已经到来的麦肯锡公司指出:数据已经渗透到每一个行业和业务职能领域,逐渐成为重要的生产因素,而人们对于海量数据的运用将预示着新一波生产率增长和消费者盈余浪潮的到来。当前,国内大数据正处于快速起步阶段。大数据的到来,将会带动包括基础架构、软件以及相关服务整个信息产业链的变革。大数据时代,数据承载事实、承载民意,在公民表达、监督方面,在政府政策的制定、实行方面,在企业的盈利创新方面,甚至在公共对话方面,都将产生深远影响,届时,尊重数据、使用数据、公开数据将成为一种行为方式。
何为“大数据”?
2012年6月,美国《国家科学院院刊》刊登了美国科学院院士迈克·古德柴尔德和中国科学院院士郭华东等共同撰写的《新一代数字地球》一文,指出人类将进入“大数据”时代。随着互联网技术的不断发展,移动互联网、物联网、电子商务等应用更加普及,带来了数据源种类和数据量的持续快速增加,大数据现象已经出现。
数据本身是一种资产,大数据是有价值的,这点在业界已形成共识,但“大数据”在业内并没有统一的定义。由于大数据分析常和云计算联系到一起,有人把大数据等同于云计算,也有人在大数据是种技术还是种现象之间纠结。关于大数据和云计算间的关系,麦肯锡是这样描述的:“如果说云计算为数据资产提供了保管、访问的场所和渠道,那么如何盘活数据资产,使其为国家治理、企业决策乃至个人生活服务,则是大数据的核心议题,也是云计算内在的灵魂和必然的升级方向。”
综合取舍各方意见,互联网数据中心(IDC)为“大数据”下了定义,得到了业内的普遍认可,即“大数据”是指为了更经济更有效地从高频率、大容量、不同结构和类型的数据中获取价值而设计的新一代架构和技术,用它来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新。
物联网、云计算、移动互联网、车联网、手机、平板电脑、PC以及遍布地球各个角落的各种各样的传感器,无一不是数据来源或者承载的方式。如此海量的数据造就了大数据的“4V”—— Volume,Variety,Value,Velocity,即数据体量巨大,从TB级别跃升到PB级别;数据类型繁多,网络日志、视频、图片、地理位置信息等都能成为数据;价值密度低,以视频为例,长时间连续不间断监控过程中,可能有用的数据仅仅有一两秒;处理速度快,遵循1秒定律。上述“4V”,造就了独一无二的“大数据”。
“大数据”将带来什么?
有数据显示,目前全球有46亿移动电话用户,每天有20亿人访问互联网,人们与数据的交互比以往任何时候都密切。据全球领先的互联网解决方案供应商思科公司预测,到2013年,在互联网上流动的交通量将达到每年667艾字节(EB)。目前,大数据所形成的市场规模在51亿美元左右,而到2017年,此数据将上涨到530亿美元。
大数据时代,网民和消费者的界限正在消弭,企业的疆界变得模糊,数据共享成为政府的一种常态化责任。数据成为企业的核心资产,并将深刻影响企业的业务模式,甚至重构其文化和组织。顺“大数据”者昌,逆“大数据”者亡。索尼前总裁出井深之曾一针见血地指出:新一代基于互联网DNA企业的核心能力在于利用新模式和新技术更加贴近消费者、深刻理解需求、高效分析信息并做出预判,所有传统的产品公司都只能沦为这种新型用户平台级公司的附庸,其衰落不是管理能扭转的。
在大数据概念提出之前,互联网企业沿着固有的脉搏一路繁荣,人们利用互联网进行沟通、娱乐和消费,传统企业一直忙于供、研、产、销,两者基本上平行发展、鲜有交集。大数据使两者产生交集,为互联网嫁接了“供应链”,为传统企业嫁接“互联网基因”,引发消费模式、制造模式、管理模式的巨大变革。可以说,大数据帮助人们开启循“数”管理的模式,“得数据者得天下”。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21