R语言-数据预处理
一、日期时间、字符串的处理
日期
Date: 日期类,年与日
POSIXct: 日期时间类,精确到秒,用数字表示
POSIXlt: 日期时间类,精确到秒,用列表表示
Sys.date(), date(), difftime(), ISOdate(), ISOdatetime()
#得到当前日期时间
(d1=Sys.Date()) #日期 年月日
(d3=Sys.time()) #时间 年月日时分秒 通过format输出指定格式的时间
(d2=date()) #日期和时间 年月日时分秒 "Fri Aug 20 11:11:00 1999"
myDate=as.Date('2007-08-09')
class(myDate) #Date
mode(myDate) #numeric
#日期转字符串
as.character(myDate)
birDay=c('01/05/1986','08/11/1976') #
dates=as.Date(birDay,'%m/%d/%Y') #向量化运算,对向量进行转换
dates
# %d 天 (01~31)
# %a 缩写星期(Mon)
# %A 星期(Monday)
# %m 月份(00~12)
# %b 缩写的月份(Jan)
# %B 月份(January)
# %y 年份(07)
# %Y 年份(2007)
# %H 时
# %M 分#得到当前日期时间
(d1=Sys.Date()) #日期 年月日
(d3=Sys.time()) #时间 年月日时分秒 通过format输出指定格式的时间
(d2=date()) #日期和时间 年月日时分秒 "Fri Aug 20 11:11:00 1999"
myDate=as.Date('2007-08-09')
class(myDate) #Date
mode(myDate) #numeric
#日期转字符串
as.character(myDate)
birDay=c('01/05/1986','08/11/1976') #
dates=as.Date(birDay,'%m/%d/%Y') #向量化运算,对向量进行转换
dates
# %d 天 (01~31)
# %a 缩写星期(Mon)
# %A 星期(Monday)
# %m 月份(00~12)
# %b 缩写的月份(Jan)
# %B 月份(January)
# %y 年份(07)
# %Y 年份(2007)
# %H 时
# %M 分
# %S 秒
td=Sys.Date()
format(td,format='%B %d %Y %s')
format(td,format='%A,%a ')
format(Sys.time(), '%H %h %M %S %s')
#日期转换成数字
as.integer(Sys.Date()) #自1970年1月1号至今的天数
as.integer(as.Date('1970-1-1')) #0
as.integer(as.Date('1970-1-2')) #1
sdate=as.Date('2004-10-01')
edate=as.Date('2010-10-22')
days=edate-sdate
days #时间类型相互减,结果显示相差的天数
ws=difftime(Sys.Date(),as.Date('1956-10-12'),units='weeks') #可以指定单位
#把年月日拼成日期
(d=ISOdate(2011,10,2));class(d) #ISOdate 的结果是POSIXct
as.Date(ISOdate(2011,10,2)) #将结果转换为Date
ISOdate(2011,2,30) #不存在的日期 结果为NA
#批量转换成日期
years=c(2010,2011,2012,2013,2014,2015)
months=1
days=c(15,20,21,19,30,3)
as.Date(ISOdate(years,months,days))
#提取日期时间的一部分
p=as.POSIXlt(Sys.Date())
p=as.POSIXlt(Sys.time())
Sys.Date()
Sys.time()
p$year + 1900 #年份需要加1900
p$mon + 1 #月份需要加1
p$mday
p$hour
p$min
p$sec
#字符串
x='hello\rwold\n'
cat(x) #woldo hello遇到\r光标移到头接着打印wold覆盖了之前的hell变成woldo
print(x) #
#字符串长度
nchar(x) #字符串长度
length(x) #1 向量中元素的个数
#字符串拼接
board=paste('b',1:4,sep='-') #"b-1" "b-2" "b-3" "b-4"
board
mm=paste('mm',1:3,sep='-') #"mm-1" "mm-2" "mm-3"
mm
outer(board,mm,paste,sep=':') #向量的外积
#[,1] [,2] [,3]
#[1,] "b-1:mm-1" "b-1:mm-2" "b-1:mm-3"
#[2,] "b-2:mm-1" "b-2:mm-2" "b-2:mm-3"
#[3,] "b-3:mm-1" "b-3:mm-2" "b-3:mm-3"
#[4,] "b-4:mm-1" "b-4:mm-2" "b-4:mm-3"
#拆分提取
board
substr(board,3,3) #子串
strsplit(board,'-',fixed=T) #拆分
#修改
sub('-','.',board,fixed=T) #修改指定字符
board
mm #"mm-1" "mm-2" "mm-3"
sub('m','p',mm) #替换第一个匹配项 "pm-1" "pm-2" "pm-3"
gsub('m','p',mm) #替换全部匹配项 "pp-1" "pp-2" "pp-3"
#查找
mm=c(mm, 'mm4') #"mm-1" "mm-2" "mm-3" "mm4"
mm
grep('-',mm) #1 2 3 向量中1,2,3包含'-'
regexpr('-',mm) #匹配成功会返回位置信息,没有找到则返回-1
二、数据预处理
保证数据质量
准确性
完整性
一致性
冗余性
时效性
...
1、提取有效数据,需要业务人员配合(主观),及相关的技术手段保障
2、了解数据定义,统一对数据定义的理解
...
数据集成 : 对多数据源进行整合
数据转换 :
数据清洗 : 异常数据,缺失数据
数据约简 : 提炼,行,列
三、数据集成
通过merge对数据进行集成
#数据集成
#数据集成
#merge pylr::join (包::函数)
(customer = data.frame(Id=c(1:6),State=c(rep("北京",3),rep("上海",3))))
(ol = data.frame(Id=c(1,4,6,7),Product=c('IPhone','Vixo','mi','Note2')))
merge(customer,ol,by=('Id')) #inner join
merge(customer,ol,by=('Id'),all=T) # full join
merge(customer,ol,by=('Id'),all.x=T) # left outer join 左链接,左边数据都在
merge(customer,ol,by=('Id'),all.y=T) # right outer join 右链接,右边数据都在
#union 去重 在df1 和df2 有相同的列名称下
(df1=data.frame(id=seq(0,by=3,length=5),name=paste('Zhang',seq(0,by=3,length=5))))
(df2=data.frame(id=seq(0,by=4,length=4),name=paste('Zhang',seq(0,by=4,length=4))))
rbind(df1,df2)
merge(df1,df2,all=T) #去重,不使用by
merge(df1,df2,by=('id')) #重名的列会被更改显示
四、数据转换
构造属性
规范化(极差化、标准化)
离散化
改善分布
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12