从数据挖掘到大数据 人工智能量化策略的优势
大数据、人工智能(AI)在金融领域的应用,正在引发越来越多的讨论。
5月20日,在上海外国语大学主办、上海外国语大学国际金融贸易学院承办的首届“金融大数据和量化研究国际研讨会”上,同花顺金融大数据量化投资部主管杨明表示,相比阿尔法狗等的出色表现,人工智能在金融领域还没有看到很惊人的点。不过,Rebellion Research在2007年推出了第一个纯人工智能(AI)投资基金……可以展开联想,未来AI技术是否将替代基金经理的工作,可以拭目以待。
“未来非常可能出现这样的情况,有一天如果想买有关黄金的股票,就可以发语音对话这个大数据平台,它就可以快速告诉你可以有哪些标的可以选择。”太平洋资产管理有限责任公司量化投资部副总经理吴迪这样说。
此外,复旦大学计算机科学技术学院教授熊赟还提到,挖掘大数据等模型甚至可以用来抓“老鼠仓”。
从数据挖掘到大数据
大数据被视为人工智能发展的基础要素,其在金融领域的应用早已展开。
吴迪称,从这两年的体会来讲,大数据对量化投资的冲击非常大,特别是很多传统的投资理念,过去是Dig Data(数据挖掘),如今是Big Data(大数据)。未来量化投资可以给投研带来很多更高层面的精确性,“原先量化投资更多体现在广度上,可以同时追踪2000只股票,但其实这2000只股票都不是挖得很深,但利用大数据,投资的深度得到了很大的拓展。”
“大数据的特点,就是非结构化数据很多。”吴迪介绍,现在的大数据库除了最基本的股票、期货、国际市场、上市公司基本面等市面上已有的数据外,在非结构化数据方面,还可以用爬虫抓取股票、期货、期权预期的数据,即投资者情绪,目前这方面数据相对较小。
目前,大数据平台可以为分析师提供一些基本面的观点,比如某一股票突然股价大爆发,可以鉴别是消费者行为还是季节因素或促销行为导致,进一步来精确个股的持续分析。
吴迪称,如果某只股票在行业内的净利润高或者有某些方面优势,而经分析师确认它的数据分析基础又很可靠,那就可以加大权重,“如果在未来不能创造绝对收益,而又用大数据分析出在未来一段时间可以创造出相对收益,那么我们就利用股指对冲去赚取相对收益。”
用大数据抓老鼠仓“信息化和大数据并非一回事,我并不认同大数据就是信息化的2.0。”复旦大学计算机科学技术学院教授熊赟现场分享了有关“特征群组分析”的模型示范,挖掘大数据等模型甚至可以用来抓“老鼠仓”。通过交易所提供的数据,来自公安部分等其他部门的数据,包括买了什么股票,什么时间,什么价位等特征全部加进来,使得数据更准确。
熊赟补充,如果(案件)有举报人,监管层虽然可以直接进行账户穿透,但这其中也涉及到大数据问题,数据非常大的情况下依然需要模型。而“特征群组分析”所要做的则是在危害还没发生之前,就可以进行锁定监控,将犯罪终结在开始的瞬间,也就是说在其卖出行为发生之前,就已被监管发现并监控。
不过,熊赟承认,在这过程中,确实发现有失效的可能,“特征群组”会发现、躲避、对抗,所以越来越多的数据会加进来,力求更为准确。除此之外,大数据模型还可以确定对哪些用户最容易“被割韭菜”等。
人工智能量化策略的优势
“相比阿尔法狗等出色表现,人工智能在金融领域还没有看到很惊人的点。”同花顺金融大数据量化投资部主管杨明指出,可以看到Kensho、Weathfront等对智能投顾的运用,部分分析师和投资顾问的工作已经可以被替代,此外Rebellion Research在2007年退出了了第一个纯人工智能(AI)投资基金……由此可以展开联想,未来AI技术是否将替代基金经理的工作可以拭目以待。
尽管如此,业内一直存在较大争议,其中最重要的一点在于:人工智能是否能取代“人的因素”。
截至2017年4月底,中国证券投资基金业协会已登记私募基金管理人18890家。已备案私募基金52493只,认缴规模12.28万亿元,实缴规模8.95万亿元,私募基金从业人员22.56万人。
杨明指出,人工智能量化策略具有如下四大优势:具有自我完善的功能,可以不断优化策略,使之实现好的投资回报;有能力快速处理海量的数据和信息,可以不间断的获取变化的宏观数据,以及可能影响单个公司运营的因素;能够根据整个市场的交易环境指标以及外部的舆论导向因素来确定买卖点;可以适应各类投资环境,主动得迎接改变,并做出恰当的反应。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21