R语言与非参数统计(核密度估计)
核密度估计是在概率论中用来估计未知的密度函数,属于非参数检验方法之一,由Rosenblatt (1955)和Emanuel Parzen(1962)提出,又名Parzen窗(Parzen window)。
假设我们有n个数X1-Xn,我们要计算某一个数X的概率密度有多大。核密度估计的方法是这样的:
其中K为核密度函数,h为设定的窗宽。
核密度估计的原理其实是很简单的。在我们对某一事物的概率分布的情况下。如果某一个数在观察中出现了,我们可以认为这个数的概率密度很大,和这个数比较近的数的概率密度也会比较大,而那些离这个数远的数的概率密度会比较小。基于这种想法,针对观察中的第一个数,我们都可以f(x-xi)去拟合我们想象中的那个远小近大概率密度。当然其实也可以用其他对称的函数。针对每一个观察中出现的数拟合出多个概率密度分布函数之后,取平均。如果某些数是比较重要,某些数反之,则可以取加权平均。
但是核密度的估计并不是,也不能够找到真正的分布函数。我们可以举一个极端的例子:在R中输入:
plot(density(rep(0, 1000)))
可以看到它得到了正态分布的曲线,但实际上呢?从数据上判断,它更有可能是一个退化的单点分布。
但是这并不意味着核密度估计是不可取的,至少他可以解决许多模拟中存在的异方差问题。比如说我们要估计一下下面的一组数据:
可以看出它是由300个服从gamma(2,2)与100个gamma(10,2)的随机数构成的,他用参数统计的办法是没有办法得到一个好的估计的。那么我们尝试使用核密度估计:
plot(density(dat),ylim=c(0,0.2))
将利用正态核密度与标准密度函数作对比
得到下图:
(红色的曲线为真实密度曲线)
可以看出核密度与真实密度相比,得到大致的估计是不成问题的。至少趋势是得到了的。如果换用gamma分布的核效果无疑会更好,但是遗憾的是r中并没有提供那么多的核供我们挑选(其实我们知道核的选择远没有窗宽的选择来得重要),所以也无需介怀。
R中提供的核:kernel = c("gaussian", "epanechnikov", "rectangular", "triangular", "biweight","cosine", "optcosine")。
我们先来看看窗宽的选择对核密度估计的影响:
得到下图,我们可以清楚的看到带宽为0.8恰好合适,其余的不是拟合不足便是过拟合。
窗宽究竟该如何选择呢?
我们这里不加证明的给出最佳窗宽选择公式:
(这个基于积分均方误差最小的角度得到的)
这里介绍两个可操作的窗宽估计办法:(这两种方法都比较容易导致过分光滑)
1、 Silverman大拇指法则
这里使用R(phi’’)/sigma^5估计R(f’’),phi代表标准正态密度函数,得到h的表达式:
h=(4/(3n))^(*1/5)*sigma
2、 极大光滑原则
h=3*(R(K)/(35n))^(1/5)*sigma
当然也有比较麻烦的窗宽估计办法,比如缺一交叉验证,插入法等,可以参阅《computational statistics》一书
我们用上面的两种办法得到的窗宽是多少,他的核密度估计效果好吗?
我们还是以上面的混合正态数据为例来看看效果。
使用大拇指法则,将数据n=400,sigma=3.030658,带入公式,h=0.9685291
使用极大光滑原则,假设K为正态核,R(K)=1/(sqrt(2*pi)),h=1.121023
可以看出他们都比我们认为的h=0.8要大一些,作图如下:
plot(density(data,bw=0.9685))
plot(density(data,bw=1.1210))
由我们给出的
以Gauss核为例做核密度估计
用Gauss核做核密度估计的R程序如下(还是使用我们的混合正态密度的例子):
作图如下:
最后说一个R的内置函数density()。其实我觉得如果不是为了简要介绍核密度估计的一些常识我们完全可以只学会这个函数
先看看函数的基本用法:
density(x, ...)
## Default S3 method:
density(x, bw = "nrd0", adjust = 1,
kernel = c("gaussian", "epanechnikov", "rectangular",
"triangular", "biweight",
"cosine", "optcosine"),
weights = NULL, window = kernel, width,
give.Rkern = FALSE,
n = 512, from, to, cut = 3, na.rm = FALSE, ...)
对重要参数做出较为详细的说明:
X:我们要进行核密度估计的数据
Bw:窗宽,这里可以由我们自己制定,也可以使用默认的办法nrd0: Bandwidth selectors for Gaussian kernels。我们还可以使用bw.SJ(x,nb = 1000, lower = 0.1 * hmax, upper = hmax, method = c("ste","dpi"), tol = 0.1 * lower),这里的method =”dpi”就是前面提到过的插入法,”ste”代表solve-the-equationplug-in,也是插入法的改进
Kernel:核的选择
Weights:对比较重要的数据采取加权处理
对于上述混合正态数据data,有
> density(data)
Call:
density.default(x = data)
Data: data (400 obs.); Bandwidth 'bw' = 0.8229
x y
Min. :-7.5040 Min. :0.0000191
1stQu.:-3.5076 1st Qu.:0.0064919
Median : 0.4889 Median :0.0438924
Mean :0.4889 Mean :0.0624940
3rdQu.: 4.4853 3rd Qu.:0.1172919
Max. :8.4817 Max. :0.1615015
知道带宽:h=0.8229(采取正态密度核)那么带入密度估计式就可以写出密度估计函数。
最后以faithful数据集为例说明density的用法:
R数据集faithful是old faithful火山爆发的数据,其中“eruption”是火山爆发的持续时间,waiting是时间间隔
对数据“eruption”做核密度估计
R程序:
知道h= 0.3348
作图:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20