R语言与非参数统计(核密度估计)
核密度估计是在概率论中用来估计未知的密度函数,属于非参数检验方法之一,由Rosenblatt (1955)和Emanuel Parzen(1962)提出,又名Parzen窗(Parzen window)。
假设我们有n个数X1-Xn,我们要计算某一个数X的概率密度有多大。核密度估计的方法是这样的:
其中K为核密度函数,h为设定的窗宽。
核密度估计的原理其实是很简单的。在我们对某一事物的概率分布的情况下。如果某一个数在观察中出现了,我们可以认为这个数的概率密度很大,和这个数比较近的数的概率密度也会比较大,而那些离这个数远的数的概率密度会比较小。基于这种想法,针对观察中的第一个数,我们都可以f(x-xi)去拟合我们想象中的那个远小近大概率密度。当然其实也可以用其他对称的函数。针对每一个观察中出现的数拟合出多个概率密度分布函数之后,取平均。如果某些数是比较重要,某些数反之,则可以取加权平均。
但是核密度的估计并不是,也不能够找到真正的分布函数。我们可以举一个极端的例子:在R中输入:
plot(density(rep(0, 1000)))
可以看到它得到了正态分布的曲线,但实际上呢?从数据上判断,它更有可能是一个退化的单点分布。
但是这并不意味着核密度估计是不可取的,至少他可以解决许多模拟中存在的异方差问题。比如说我们要估计一下下面的一组数据:
可以看出它是由300个服从gamma(2,2)与100个gamma(10,2)的随机数构成的,他用参数统计的办法是没有办法得到一个好的估计的。那么我们尝试使用核密度估计:
plot(density(dat),ylim=c(0,0.2))
将利用正态核密度与标准密度函数作对比
得到下图:
(红色的曲线为真实密度曲线)
可以看出核密度与真实密度相比,得到大致的估计是不成问题的。至少趋势是得到了的。如果换用gamma分布的核效果无疑会更好,但是遗憾的是r中并没有提供那么多的核供我们挑选(其实我们知道核的选择远没有窗宽的选择来得重要),所以也无需介怀。
R中提供的核:kernel = c("gaussian", "epanechnikov", "rectangular", "triangular", "biweight","cosine", "optcosine")。
我们先来看看窗宽的选择对核密度估计的影响:
得到下图,我们可以清楚的看到带宽为0.8恰好合适,其余的不是拟合不足便是过拟合。
窗宽究竟该如何选择呢?
我们这里不加证明的给出最佳窗宽选择公式:
(这个基于积分均方误差最小的角度得到的)
这里介绍两个可操作的窗宽估计办法:(这两种方法都比较容易导致过分光滑)
1、 Silverman大拇指法则
这里使用R(phi’’)/sigma^5估计R(f’’),phi代表标准正态密度函数,得到h的表达式:
h=(4/(3n))^(*1/5)*sigma
2、 极大光滑原则
h=3*(R(K)/(35n))^(1/5)*sigma
当然也有比较麻烦的窗宽估计办法,比如缺一交叉验证,插入法等,可以参阅《computational statistics》一书
我们用上面的两种办法得到的窗宽是多少,他的核密度估计效果好吗?
我们还是以上面的混合正态数据为例来看看效果。
使用大拇指法则,将数据n=400,sigma=3.030658,带入公式,h=0.9685291
使用极大光滑原则,假设K为正态核,R(K)=1/(sqrt(2*pi)),h=1.121023
可以看出他们都比我们认为的h=0.8要大一些,作图如下:
plot(density(data,bw=0.9685))
plot(density(data,bw=1.1210))
由我们给出的
以Gauss核为例做核密度估计
用Gauss核做核密度估计的R程序如下(还是使用我们的混合正态密度的例子):
作图如下:
最后说一个R的内置函数density()。其实我觉得如果不是为了简要介绍核密度估计的一些常识我们完全可以只学会这个函数
先看看函数的基本用法:
density(x, ...)
## Default S3 method:
density(x, bw = "nrd0", adjust = 1,
kernel = c("gaussian", "epanechnikov", "rectangular",
"triangular", "biweight",
"cosine", "optcosine"),
weights = NULL, window = kernel, width,
give.Rkern = FALSE,
n = 512, from, to, cut = 3, na.rm = FALSE, ...)
对重要参数做出较为详细的说明:
X:我们要进行核密度估计的数据
Bw:窗宽,这里可以由我们自己制定,也可以使用默认的办法nrd0: Bandwidth selectors for Gaussian kernels。我们还可以使用bw.SJ(x,nb = 1000, lower = 0.1 * hmax, upper = hmax, method = c("ste","dpi"), tol = 0.1 * lower),这里的method =”dpi”就是前面提到过的插入法,”ste”代表solve-the-equationplug-in,也是插入法的改进
Kernel:核的选择
Weights:对比较重要的数据采取加权处理
对于上述混合正态数据data,有
> density(data)
Call:
density.default(x = data)
Data: data (400 obs.); Bandwidth 'bw' = 0.8229
x y
Min. :-7.5040 Min. :0.0000191
1stQu.:-3.5076 1st Qu.:0.0064919
Median : 0.4889 Median :0.0438924
Mean :0.4889 Mean :0.0624940
3rdQu.: 4.4853 3rd Qu.:0.1172919
Max. :8.4817 Max. :0.1615015
知道带宽:h=0.8229(采取正态密度核)那么带入密度估计式就可以写出密度估计函数。
最后以faithful数据集为例说明density的用法:
R数据集faithful是old faithful火山爆发的数据,其中“eruption”是火山爆发的持续时间,waiting是时间间隔
对数据“eruption”做核密度估计
R程序:
知道h= 0.3348
作图:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何构建数据分析整体框架? 要让数据分析发挥其最大效能,建立一个清晰、完善的整体框架至关重要。今天,就让我们一同深入探讨 ...
2024-12-27AI来了,数分人也可以很省力,今天给大家介绍7个AI+数据分析工具,建议收藏。 01酷表 EXCEL 网址:https://chatexcel.com/ 这是 ...
2024-12-26一个好的数据分析模型不仅能使分析具备条理性和逻辑性,而且还更具备结构化和体系化,并保证分析结果的有效性和准确性。好的数据 ...
2024-12-26当下,AI 的发展堪称狂飙猛进。从 ChatGPT 横空出世到各种大语言模型(LLM)接连上线,似乎每个人的朋友圈都在讨论 AI 会不会“ ...
2024-12-26数据分析师这个职业已经成为了职场中的“香饽饽”,无论是互联网公司还是传统行业,都离不开数据支持。想成为一名优秀的数据分析 ...
2024-12-26在数据驱动决策成为商业常态的今天,数据分析师这一职业正迎来前所未有的机遇与挑战。很多希望转行或初入职场的人士不禁询问:数 ...
2024-12-25数据分析师,这一近年来炙手可热的职业,吸引了大量求职者的注意。凭借在大数据时代中的关键作用,数据分析师不仅需要具备处理数 ...
2024-12-25在当今数字化变革的浪潮中,数据分析师这一职业正迎来前所未有的发展机遇。回想我自己初入数据分析行业时,那种既兴奋又略显谨慎 ...
2024-12-25在当今信息爆炸的时代,数据已经像空气一样无处不在,而数据分析则是解锁这些信息宝藏的钥匙。数据分析的过程就像是一次探险,从 ...
2024-12-25在职场上,拍脑袋做决策的时代早已过去。数据分析正在成为每个职场人的核心竞争力,不仅能帮你找到问题,还能提供解决方案,提升 ...
2024-12-24Excel是数据分析的重要工具,强大的内置功能使其成为许多分析师的首选。在日常工作中,启用Excel的数据分析工具库能够显著提升数 ...
2024-12-23在当今信息爆炸的时代,数据分析师如同一位现代社会的侦探,肩负着从海量数据中提炼出有价值信息的重任。在这个过程中,掌握一系 ...
2024-12-23在现代的职场中,制作吸引人的PPT已经成为展示信息的重要手段,而其中数据对比的有效呈现尤为关键。为了让数据在幻灯片上不仅准 ...
2024-12-23在信息泛滥的现代社会,数据分析师已成为企业决策过程中不可或缺的角色。他们的任务是从海量数据中提取有价值的洞察,帮助组织制 ...
2024-12-23在数据驱动时代,数据分析已成为各行各业的必需技能。无论是提升个人能力还是推动职业发展,选择一条适合自己的学习路线至关重要 ...
2024-12-23在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19