机器学习之k-近邻(kNN)算法与Python实现
k-近邻算法(kNN,k-NearestNeighbor),是最简单的机器学习分类算法之一,其核心思想在于用距离目标最近的k个样本数据的分类来代表目标的分类(这k个样本数据和目标数据最为相似)。
一 k-近邻(kNN)算法概述
1.概念
kNN算法的核心思想是用距离最近的k个样本数据的分类来代表目标数据的分类。
其原理具体地讲,存在一个训练样本集,这个数据训练样本的数据集合中的每个样本都包含数据的特征和目标变量(即分类值),输入新的不含目标变量的数据,将该数据的特征与训练样本集中每一个样本进行比较,找到最相似的k个数据,这k个数据出席那次数最多的分类,即输入的具有特征值的数据的分类。
例如,训练样本集中包含一系列数据,这个数据包括样本空间位置(特征)和分类信息(即目标变量,属于红色三角形还是蓝色正方形),要对中心的绿色数据的分类。运用kNN算法思想,距离最近的k个样本的分类来代表测试数据的分类,那么:
当k=3时,距离最近的3个样本在实线内,具有2个红色三角和1个蓝色正方形**,因此将它归为红色三角。
当k=5时,距离最近的5个样本在虚线内,具有2个红色三角和3个蓝色正方形**,因此将它归为蓝色正方形。
2.特点
优点
(1)监督学习:可以看到,kNN算法首先需要一个训练样本集,这个集合中含有分类信息,因此它属于监督学习。
(2)通过计算距离来衡量样本之间相似度,算法简单,易于理解和实现。
(3)对异常值不敏感
缺点 (4)需要设定k值,结果会受到k值的影响,通过上面的例子可以看到,不同的k值,最后得到的分类结果不尽相同。k一般不超过20。(5)计算量大,需要计算样本集中每个样本的距离,才能得到k个最近的数据样本。 (6)训练样本集不平衡导致结果不准确问题。当样本集中主要是某个分类,该分类数量太大,导致近邻的k个样本总是该类,而不接近目标分类。
3.kNN算法流程
一般情况下,kNN有如下流程:
(1)收集数据:确定训练样本集合测试数据;
(2)计算测试数据和训练样本集中每个样本数据的距离;
常用的距离计算公式:
(3)按照距离递增的顺序排序;
(4)选取距离最近的k个点;
(5)确定这k个点中分类信息的频率;
(6)返回前k个点中出现频率最高的分类,作为当前测试数据的分类。二 、Python算法实现
1.KNN算法分类器
建立一个名为“KNN.py”的文件,构造一个kNN算法分类器的函数:
from numpy import *
import operator
#定义KNN算法分类器函数
#函数参数包括:(测试数据,训练数据,分类,k值)
def classify(inX,dataSet, labels, k):
dataSetSize = dataSet.shape[0]
diffMat = tile(inX,(dataSetSize,1))-dataSet
sqDiffMat=diffMat**2
sqDistances=sqDiffMat.sum(axis=1)
distances=sqDistances**0.5 #计算欧式距离
sortedDistIndicies=distances.argsort() #排序并返回index
#选择距离最近的k个值
classCount={}
for i in range(k):
voteIlabel=labels[sortedDistIndicies[i]]
#D.get(k[,d]) -> D[k] if k in D, else d. d defaults to None.
classCount[voteIlabel]=classCount.get(voteIlabel,0)+1
#排序
sortedClassCount=sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
return sortedClassCount[0][0]
在KNN.py中定义一个生成“训练样本集”的函数:
#定义一个生成“训练样本集”的函数,包含特征和分类信息在Python控制台先将当前目录设置为“KNN.py”所在的文件目录,将测试数据[0,0]进行KNN算法分类测试,输入:
import KNN
#生成训练样本
group,labels=KNN.createDataSet()
#对测试数据[0,0]进行KNN算法分类测试
KNN.classify([0,0],group,labels,3)
Out[3]: 'B'
可以看到该分类器函数将[0,0]分类为B组,符合实际情况,分入了符合逻辑的正确的类别。但如何知道KNN分类的正确性呢?
2.kNN算法用于约会网站配对
2.1准备数据
该数据在文本文件datingTestSet2.txt中,该数据具有1000行,4列,分别是特征数据(每年获得的飞行常客里程数,玩视频游戏所耗时间百分比,每周消费的冰淇淋公升数),和目标变量/分类数据(是否喜欢(1表示不喜欢,2表示魅力一般,3表示极具魅力)),部分数据展示如下:
完整地数据下载地址如下:
约会网站测试数据
(1)将文本记录转为成numpy
在python控制台输入:
in [5]:datingDataMat,datingLabels=KNN.file2matrix('G:\Workspaces\MachineLearning\machinelearninginaction\Ch02\datingTestSet2.txt')#括号是文件路径
(2)可视化分析数据
运用Matplotlib创建散点图来分析数据:
import matplotlib
import matplotlib.pyplot as plt
#对第二列和第三列数据进行分析:
fig=plt.figure()
ax=fig.add_subplot(111)
ax.scatter(datingDataMat[:,1],datingDataMat[:,2],c=datingLabels)
plt.xlabel('Percentage of Time Spent Playing Video Games')
plt.ylabel('Liters of Ice Cream Consumed Per Week')
#对第一列和第二列进行分析:
fig=plt.figure()
ax=fig.add_subplot(111)
ax.scatter(datingDataMat[:,0],datingDataMat[:,1],c=datingLabels)
plt.xlabel('Miles of plane Per year')
plt.ylabel('Percentage of Time Spent Playing Video Games')
ax.legend(loc='best')
(3)数据归一化
由于不同的数据在大小上差别较大,在计算欧式距离,整体较大的数据明细所占的比重更高,因此需要对数据进行归一化处理。
在Python控制台输入:
reload(KNN)数据的准备工作完成,下一步对算法进行测试。
2.2 算法测试
kNN算法分类的结果的效果,可以使用正确率/错误率来衡量,错误率为0,则表示分类很完美,如果错误率为1,表示分类完全错误。我们使用1000条数据中的90%作为训练样本集,其中的10%来测试错误率。
#定义测试算法的函数在控制台输入命令来测试错误率:
reload(KNN)
Out[150]: <module 'KNN' from 'G:\\Workspaces\\MachineLearning\\KNN.py'>
KNN.datingClassTest()
the classifier came back with: 3,the real answer is: 3
the classifier came back with: 2,the real answer is: 2
the classifier came back with: 1,the real answer is: 1
... ...
the classifier came back with: 2,the real answer is: 2
the classifier came back with: 1,the real answer is: 1
the classifier came back with: 3,the real answer is: 1
the total error rate is : 0.050000
可以看到KNN算法分类器处理约会数据的错误率是5%,具有较高额正确率。
可以在datingClassTest函数中传入参数h来改变测试数据比例,来看修改后Ration后错误率有什么样的变化。
KNN.datingClassTest(0.2)
the classifier came back with: 3,the real answer is: 3
the classifier came back with: 2,the real answer is: 2
the classifier came back with: 1,the real answer is: 1
... ...
the classifier came back with: 2,the real answer is: 2
the classifier came back with: 3,the real answer is: 3
the classifier came back with: 2,the real answer is: 2
the total error rate is : 0.080000
减小训练样本集数据,增加测试数据,错误率增加到8%。
2.3 使用KNN算法进行预测
def classifypersion():测试一下:
reload(KNN)
Out[153]: <module 'KNN' from 'G:\\Workspaces\\MachineLearning\\KNN.py'>
KNN.classifypersion()
percentage of time spent playing video games?10
frequent flier miles earned per year?10000
liters of ice creamconsued per year?0.5
You will probably like this persion :not at all
3. KNN算法用于手写识别系统
已经将图片转化为32*32 的文本格式,文本格式如下:
00000000000111110000000000000000
00000000001111111000000000000000
00000000011111111100000000000000
00000000111111111110000000000000
00000001111111111111000000000000
00000011111110111111100000000000
00000011111100011111110000000000
00000011111100001111110000000000
00000111111100000111111000000000
00000111111100000011111000000000
00000011111100000001111110000000
00000111111100000000111111000000
00000111111000000000011111000000
00000111111000000000011111100000
00000111111000000000011111100000
00000111111000000000001111100000
00000111111000000000001111100000
00000111111000000000001111100000
00000111111000000000001111100000
00000111111000000000001111100000
00000011111000000000001111100000
00000011111100000000011111100000
00000011111100000000111111000000
00000001111110000000111111100000
00000000111110000001111111000000
00000000111110000011111110000000
00000000111111000111111100000000
00000000111111111111111000000000
00000000111111111111110000000000
00000000011111111111100000000000
00000000001111111111000000000000
00000000000111111110000000000000
3.1数据准备
(1)将32*32的文本格式转为成1*2014的向量
在控制台中输入命令测试下函数:
reload(KNN)
3.2 算法测试
使用kNN算法测试手写数字识别
#引入os模块的listdir函数,列出给定目录的文件名
from os impor listdir
def handwritingClassTest():
hwLabels=[]
trainingFileList=listdir('G:/Workspaces/MachineLearning/machinelearninginaction/Ch02/trainingDigits')#列出文件名
m=len(trainingFileList) #文件数目
trainMat=zeros((m,1024))
#从文件名中解析分类信息,如0_13.txt
for i in range(m):
fileNameStr=trainingFileList[i]
fileStr=fileNameStr.split('.')[0]
classNumber=int(fileStr.split('_')[0])
hwLabels.append(classNumber)
trainMat[i]=img2vector('G:/Workspaces/MachineLearning/machinelearninginaction/Ch02/trainingDigits/%s'%fileNameStr)
testFileList=listdir('G:/Workspaces/MachineLearning/machinelearninginaction/Ch02/testDigits')
errorCount=0
#同上,解析测试数据的分类信息
mTest=len(testFileList)
for i in range(mTest):
fileNameStr=testFileList[i]
fileStr=fileNameStr.split('.')[0]
classNumber=int(fileStr.split('_')[0])
vectorUnderTest=img2vector('G:/Workspaces/MachineLearning/machinelearninginaction/Ch02/testDigits/%s'%fileNameStr)
classifierResult=classify(vectorUnderTest,trainMat,hwLabels,3)
print('the classifier came back with :%d,the real answer is:%d'%(classifierResult,classNumber))
if(classifierResult!=classNumber):errorCount+=1
print('\n the total number of errors is: %d'%errorCount)
print('\n total error rate is %f'%(errorCount/float(mTest)))
接下来在Python控制台输入命令来测试手写数字识别:
reload(KNN)
KNN.handwritingClassTest()
the classifier came back with :0,the real answer is:0
the classifier came back with :0,the real answer is:0
the classifier came back with :0,the real answer is:0
... ...
the classifier came back with :9,the real answer is:9
the classifier came back with :9,the real answer is:9
the classifier came back with :9,the real answer is:9
the total number of errors is: 10
total error rate is 0.010571
错误利率1.057%,具有较高的准确率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31