机器学习之k-近邻(kNN)算法与Python实现
k-近邻算法(kNN,k-NearestNeighbor),是最简单的机器学习分类算法之一,其核心思想在于用距离目标最近的k个样本数据的分类来代表目标的分类(这k个样本数据和目标数据最为相似)。
一 k-近邻(kNN)算法概述
1.概念
kNN算法的核心思想是用距离最近的k个样本数据的分类来代表目标数据的分类。
其原理具体地讲,存在一个训练样本集,这个数据训练样本的数据集合中的每个样本都包含数据的特征和目标变量(即分类值),输入新的不含目标变量的数据,将该数据的特征与训练样本集中每一个样本进行比较,找到最相似的k个数据,这k个数据出席那次数最多的分类,即输入的具有特征值的数据的分类。
例如,训练样本集中包含一系列数据,这个数据包括样本空间位置(特征)和分类信息(即目标变量,属于红色三角形还是蓝色正方形),要对中心的绿色数据的分类。运用kNN算法思想,距离最近的k个样本的分类来代表测试数据的分类,那么:
当k=3时,距离最近的3个样本在实线内,具有2个红色三角和1个蓝色正方形**,因此将它归为红色三角。
当k=5时,距离最近的5个样本在虚线内,具有2个红色三角和3个蓝色正方形**,因此将它归为蓝色正方形。
2.特点
优点
(1)监督学习:可以看到,kNN算法首先需要一个训练样本集,这个集合中含有分类信息,因此它属于监督学习。
(2)通过计算距离来衡量样本之间相似度,算法简单,易于理解和实现。
(3)对异常值不敏感
缺点 (4)需要设定k值,结果会受到k值的影响,通过上面的例子可以看到,不同的k值,最后得到的分类结果不尽相同。k一般不超过20。(5)计算量大,需要计算样本集中每个样本的距离,才能得到k个最近的数据样本。 (6)训练样本集不平衡导致结果不准确问题。当样本集中主要是某个分类,该分类数量太大,导致近邻的k个样本总是该类,而不接近目标分类。
3.kNN算法流程
一般情况下,kNN有如下流程:
(1)收集数据:确定训练样本集合测试数据;
(2)计算测试数据和训练样本集中每个样本数据的距离;
常用的距离计算公式:
(3)按照距离递增的顺序排序;
(4)选取距离最近的k个点;
(5)确定这k个点中分类信息的频率;
(6)返回前k个点中出现频率最高的分类,作为当前测试数据的分类。二 、Python算法实现
1.KNN算法分类器
建立一个名为“KNN.py”的文件,构造一个kNN算法分类器的函数:
from numpy import *
import operator
#定义KNN算法分类器函数
#函数参数包括:(测试数据,训练数据,分类,k值)
def classify(inX,dataSet, labels, k):
dataSetSize = dataSet.shape[0]
diffMat = tile(inX,(dataSetSize,1))-dataSet
sqDiffMat=diffMat**2
sqDistances=sqDiffMat.sum(axis=1)
distances=sqDistances**0.5 #计算欧式距离
sortedDistIndicies=distances.argsort() #排序并返回index
#选择距离最近的k个值
classCount={}
for i in range(k):
voteIlabel=labels[sortedDistIndicies[i]]
#D.get(k[,d]) -> D[k] if k in D, else d. d defaults to None.
classCount[voteIlabel]=classCount.get(voteIlabel,0)+1
#排序
sortedClassCount=sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
return sortedClassCount[0][0]
在KNN.py中定义一个生成“训练样本集”的函数:
#定义一个生成“训练样本集”的函数,包含特征和分类信息在Python控制台先将当前目录设置为“KNN.py”所在的文件目录,将测试数据[0,0]进行KNN算法分类测试,输入:
import KNN
#生成训练样本
group,labels=KNN.createDataSet()
#对测试数据[0,0]进行KNN算法分类测试
KNN.classify([0,0],group,labels,3)
Out[3]: 'B'
可以看到该分类器函数将[0,0]分类为B组,符合实际情况,分入了符合逻辑的正确的类别。但如何知道KNN分类的正确性呢?
2.kNN算法用于约会网站配对
2.1准备数据
该数据在文本文件datingTestSet2.txt中,该数据具有1000行,4列,分别是特征数据(每年获得的飞行常客里程数,玩视频游戏所耗时间百分比,每周消费的冰淇淋公升数),和目标变量/分类数据(是否喜欢(1表示不喜欢,2表示魅力一般,3表示极具魅力)),部分数据展示如下:
完整地数据下载地址如下:
约会网站测试数据
(1)将文本记录转为成numpy
在python控制台输入:
in [5]:datingDataMat,datingLabels=KNN.file2matrix('G:\Workspaces\MachineLearning\machinelearninginaction\Ch02\datingTestSet2.txt')#括号是文件路径
(2)可视化分析数据
运用Matplotlib创建散点图来分析数据:
import matplotlib
import matplotlib.pyplot as plt
#对第二列和第三列数据进行分析:
fig=plt.figure()
ax=fig.add_subplot(111)
ax.scatter(datingDataMat[:,1],datingDataMat[:,2],c=datingLabels)
plt.xlabel('Percentage of Time Spent Playing Video Games')
plt.ylabel('Liters of Ice Cream Consumed Per Week')
#对第一列和第二列进行分析:
fig=plt.figure()
ax=fig.add_subplot(111)
ax.scatter(datingDataMat[:,0],datingDataMat[:,1],c=datingLabels)
plt.xlabel('Miles of plane Per year')
plt.ylabel('Percentage of Time Spent Playing Video Games')
ax.legend(loc='best')
(3)数据归一化
由于不同的数据在大小上差别较大,在计算欧式距离,整体较大的数据明细所占的比重更高,因此需要对数据进行归一化处理。
在Python控制台输入:
reload(KNN)数据的准备工作完成,下一步对算法进行测试。
2.2 算法测试
kNN算法分类的结果的效果,可以使用正确率/错误率来衡量,错误率为0,则表示分类很完美,如果错误率为1,表示分类完全错误。我们使用1000条数据中的90%作为训练样本集,其中的10%来测试错误率。
#定义测试算法的函数在控制台输入命令来测试错误率:
reload(KNN)
Out[150]: <module 'KNN' from 'G:\\Workspaces\\MachineLearning\\KNN.py'>
KNN.datingClassTest()
the classifier came back with: 3,the real answer is: 3
the classifier came back with: 2,the real answer is: 2
the classifier came back with: 1,the real answer is: 1
... ...
the classifier came back with: 2,the real answer is: 2
the classifier came back with: 1,the real answer is: 1
the classifier came back with: 3,the real answer is: 1
the total error rate is : 0.050000
可以看到KNN算法分类器处理约会数据的错误率是5%,具有较高额正确率。
可以在datingClassTest函数中传入参数h来改变测试数据比例,来看修改后Ration后错误率有什么样的变化。
KNN.datingClassTest(0.2)
the classifier came back with: 3,the real answer is: 3
the classifier came back with: 2,the real answer is: 2
the classifier came back with: 1,the real answer is: 1
... ...
the classifier came back with: 2,the real answer is: 2
the classifier came back with: 3,the real answer is: 3
the classifier came back with: 2,the real answer is: 2
the total error rate is : 0.080000
减小训练样本集数据,增加测试数据,错误率增加到8%。
2.3 使用KNN算法进行预测
def classifypersion():测试一下:
reload(KNN)
Out[153]: <module 'KNN' from 'G:\\Workspaces\\MachineLearning\\KNN.py'>
KNN.classifypersion()
percentage of time spent playing video games?10
frequent flier miles earned per year?10000
liters of ice creamconsued per year?0.5
You will probably like this persion :not at all
3. KNN算法用于手写识别系统
已经将图片转化为32*32 的文本格式,文本格式如下:
00000000000111110000000000000000
00000000001111111000000000000000
00000000011111111100000000000000
00000000111111111110000000000000
00000001111111111111000000000000
00000011111110111111100000000000
00000011111100011111110000000000
00000011111100001111110000000000
00000111111100000111111000000000
00000111111100000011111000000000
00000011111100000001111110000000
00000111111100000000111111000000
00000111111000000000011111000000
00000111111000000000011111100000
00000111111000000000011111100000
00000111111000000000001111100000
00000111111000000000001111100000
00000111111000000000001111100000
00000111111000000000001111100000
00000111111000000000001111100000
00000011111000000000001111100000
00000011111100000000011111100000
00000011111100000000111111000000
00000001111110000000111111100000
00000000111110000001111111000000
00000000111110000011111110000000
00000000111111000111111100000000
00000000111111111111111000000000
00000000111111111111110000000000
00000000011111111111100000000000
00000000001111111111000000000000
00000000000111111110000000000000
3.1数据准备
(1)将32*32的文本格式转为成1*2014的向量
在控制台中输入命令测试下函数:
reload(KNN)
3.2 算法测试
使用kNN算法测试手写数字识别
#引入os模块的listdir函数,列出给定目录的文件名
from os impor listdir
def handwritingClassTest():
hwLabels=[]
trainingFileList=listdir('G:/Workspaces/MachineLearning/machinelearninginaction/Ch02/trainingDigits')#列出文件名
m=len(trainingFileList) #文件数目
trainMat=zeros((m,1024))
#从文件名中解析分类信息,如0_13.txt
for i in range(m):
fileNameStr=trainingFileList[i]
fileStr=fileNameStr.split('.')[0]
classNumber=int(fileStr.split('_')[0])
hwLabels.append(classNumber)
trainMat[i]=img2vector('G:/Workspaces/MachineLearning/machinelearninginaction/Ch02/trainingDigits/%s'%fileNameStr)
testFileList=listdir('G:/Workspaces/MachineLearning/machinelearninginaction/Ch02/testDigits')
errorCount=0
#同上,解析测试数据的分类信息
mTest=len(testFileList)
for i in range(mTest):
fileNameStr=testFileList[i]
fileStr=fileNameStr.split('.')[0]
classNumber=int(fileStr.split('_')[0])
vectorUnderTest=img2vector('G:/Workspaces/MachineLearning/machinelearninginaction/Ch02/testDigits/%s'%fileNameStr)
classifierResult=classify(vectorUnderTest,trainMat,hwLabels,3)
print('the classifier came back with :%d,the real answer is:%d'%(classifierResult,classNumber))
if(classifierResult!=classNumber):errorCount+=1
print('\n the total number of errors is: %d'%errorCount)
print('\n total error rate is %f'%(errorCount/float(mTest)))
接下来在Python控制台输入命令来测试手写数字识别:
reload(KNN)
KNN.handwritingClassTest()
the classifier came back with :0,the real answer is:0
the classifier came back with :0,the real answer is:0
the classifier came back with :0,the real answer is:0
... ...
the classifier came back with :9,the real answer is:9
the classifier came back with :9,the real answer is:9
the classifier came back with :9,the real answer is:9
the total number of errors is: 10
total error rate is 0.010571
错误利率1.057%,具有较高的准确率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31