“数据挖掘“(Data Mining)又被称为“数据中的知识发现”(KDD),顾名思义,也就是通过数据清理、数据集成、数据选择、数据变换、数据挖掘、模式评估、知识表示等一些列步骤,对数据进行分类、聚类,发现其中的关联关系或者离群点,来发现新的知识。
1、数据类型
上世纪70-80年代,“数据库”技术的发展而产生的数据库管理系统,方便用户进行关系型的数据管理,用户可以进行SQL查询等数据操作,关系型数据库实际上就是二维表;然而对于大型的跨地域公司,要汇总各个地方数据库却不容易,于是就产生了“数据仓库”,数据仓库将数据库的数据进行整合,下钻(drill down)和上卷(roll up)操作可以得到详细信息和汇总信息,由此诞生了高级数据库系统和高级数据分析,数据仓库可以看做是数据立方体(Data Cube)。20世纪90年代,万维网迅速发展,各式各类的数据类型出现,时间序列数据、超文本和多媒体数据(图片、视频、声音),空间数据(地图),网状数据(社会关系网络)等各种复杂的非结构化数据,总之,可以大致的将数据挖掘的数据类型分为以下几类:
(1)数据库 数据
数据库系统,又称为数据库管理系统(DBMS),是一种关系型数据库,又不同的表组成,每一个表有一个唯一的“关键字标识”来表示一个对象,每个对象有又若干属性,每个对象及其属性构成一个“元组”。
对于一个学生关系表,学号是唯一的“关键字标识”,姓名、性别、院系、年级都是属性,每一行都是一个“元组”。
(2)数据仓库 数据
数据立方体
数据仓库的数据格式可以看做是一个数据立方体,是一个多维的数据结构,如图有三个维度,分别是时间维、机构维、指标维。对数据立方体进行切片可以得到截面数据,竖直方向切片可以得到周一(Monday)三个地方借记卡情况。
下钻是对数据的具体化,如对时间维下钻,可以得到周一10:00至14:00的四个小时内的借记卡使用情况;
上卷又称上钻,是对数据汇总,对机构维上卷,可以得到中国借记卡使用情况。
(3)事务数据
事务数据库数据中每个记录是一个事务,如淘宝的一次订单。
(4)其他数据
数据库一般是结构化的数据,还有许多非结构化数据。如序列数据(时间序列、生物序列等),空间数据(地图),工程设计数据(建筑结构设计),超文本和多媒体数据、网状数据等。
2 数据挖掘的步骤
(1)数据清理:消除噪音数据
(2)数据集成:多种数据组合一起
(3)数据选择:选择相关数据
(4)数据变换:汇总等操作将数据变换成适合挖掘的数据
(5)数据挖掘:对数据进行操作
(6)模式评估:根据某种模式来评估其价值
(7)知识表示:可视化表现
3 数据挖掘模式
(1)类和概念:特征化与区分
对数据汇总和分类,考察其具有什么样的特征。
(2)挖掘频繁模式:关联和相关性
频繁出现的序列:出现次数最多的事件;频繁出现的子序列:事件之间的关联性,如购买A的情况下再购买B的模式
(3)预测分析的分类和回归
分类:决策树、神经网络
回归:相关性描述和预测,描述解释变量与被解释变量之间的相关性,并构造数学模型来预测被解释变量。
(4)聚类
根据“最大化类内相似性,最小化类间相似性”的原则进行聚类和分组。
(5)离群点
异常的值,有的时候需要抛弃异常值,但有时通过异常值可以发现问题,如欺诈行为。
4 数据挖掘相关内容
(1)统计学
统计学中数值描述(如均值、中位数、众数、方差,柱状图、散点图等),回归分析(线性回归、非线性回归、一元回归、多元回归),离散型和连续性数据的概率分布、描述性统计和推断性统计都和数据挖掘相关。
(2)机器学习
机器学习是用数据对机器不断训练以来提高机器性能,类似条件反射。比如机器最开始只能识别“中华田园犬”,“犬”类库中只有中华田园犬,通过一次又一次学习,将萨摩耶、吉娃娃、哈士奇、泰迪都纳入“犬”库,机器就知道了这些也是“犬”。随着图片和种类的增加,机器对犬的识别度也逐渐增加。
(3)数据库和数据仓库
数据库和数据仓库本身就是用于数据的管理,其包含的海量数据可以用来做OLTP,OLAP。
(4)信息检索
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29持证人简介 郭畅,CDA数据分析师二级持证人,安徽大学毕业,目前就职于徽商银行总行大数据部,两年工作经验,主要参与两项跨部 ...
2025-01-282025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-01-27在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-01-26数据指标体系 “数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而 ...
2025-01-26在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-25俗话说的好“文不如表,表不如图”,图的信息传达效率很高,是数据汇报、数据展示的重要手段。好的数据展示不仅需要有图,还要选 ...
2025-01-24数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪70 ...
2025-01-24又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22