机器学习基本原理和概念
1. VC dimension(VC维,非常重要的概念)
能够shutter 二分类问题的上限。也是衡量模型复杂度的工具(类似自由度的概念)。之所以这个概念比较重要是它能够解释为什么机器能够学习。
1),以概率统计中常用的手段:用sample来估计整体,机器学习也是如此,就是说,通过对采样得到的sample进行学习,能够用来对out of sample进行估计、处理、预测、分类等等。所谓的学习就是从一堆Hypothesis(set)中,利用sample,通过learning algorithm赛选出合适的hypothesis - g的过程。
2)塞选的标准通常是各种类型的error(0/1error,square error...),这些误差是用来调节W权重,最后得到比较小Error (in sample)的hypothesis(g)。
3)这个g只是在in sample上表现比较好,其实在in sample上表现好并没什么卵用,因为如果你只是处理in sample数据的话就没有必要进行机器学习,之所以使用机器学习,就是因为不可能得到所有的data,你只能sample一部分的sample。所以最好的g应当是在out of sample上表现好的。因为,我们并不能测得error in sample,所以最好的办法就是建立error in sample 与error out of sample的联系,能不能有一个upper bound来衡量两者之间的关系呢?答案是肯定,那就是Hoeffding's 不等式。
4)hoeffding不等式说明了一个问题,如果Hypothesis set中hypothesis能shutter很多种类(就是VC dimension很大),就会导致这个Error in sample与Error out of sample相差很大,也就是指模型复杂度很大。这样error in sample 你能做的很小,但是error out of sample会很大。
5)VC维大=>模型复杂度高=>error in sample 小=>模型不够平滑=>generalization能力弱=>error out of sample大=>overfitting=>模型并没有卵用。
2. Generalization(泛化能力)
1)衡量模型在out of sample上的表现;
2)通常曲线越平滑,泛化能力越强,但error in sample就可能越大,underfitting;曲线也复杂,error in sample就可能做的越小,但泛化能力越弱,overfitting;
3. Regularization(正则化)
1)用来控制模型复杂度,从而实现Error in sample与Error out of sample的逼近,也就是使得既具有较好的精度,又有较好的泛化能力;
2)不同的regularizer对应不同的回归方法:L1,L2,...实际上就是一种惩罚措施。用来权衡是要好的error和好的generalization能力;
4. Validation
用来衡量机器学习泛化能力的一种方法。因为机器学习得到的Hypothesis是为了在out of sample上进行处理,而不是在in sample上处理。所以,用来评价机器学习是否学到位的一种手段就是从validation。一般的做法是将先验的数据集分开为训练集和验证集,用训练集进行Hypothesis的学习,用验证集决定学习的终止条件,并给出学习的Hypothesis性能指标。但是如果将数据集分开,那么用于训练的样本就变少了。我们知道训练集的样本数N是机器学习中防止overfitting的一重大的因素。如果模型复杂度较高的话,通常需要增加训练样本的数量来克服由于模型复杂度导致的overfitting的风险。比如神经网络就是一种典型的例子。所以最好是能够不减少训练集的样本数,而且还能进行validation。这样就提出了leave one out的validation和N-folder validation。
除了以上四个我觉得极为重要的概念和思想,还有一些主要内容比如:导致overfitting的几种原因:过度使用vc dimension,noise和limited data size N,解决overfitting的几种方法、技巧:validation(cross validation,leave one out validation, N-folder valiation...),data hinting, data cleaning/pruning, regularization, start from simple model等等。这里都不再进行总结
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel是数据分析的重要工具,强大的内置功能使其成为许多分析师的首选。在日常工作中,启用Excel的数据分析工具库能够显著提升数 ...
2024-12-23在当今信息爆炸的时代,数据分析师如同一位现代社会的侦探,肩负着从海量数据中提炼出有价值信息的重任。在这个过程中,掌握一系 ...
2024-12-23在现代的职场中,制作吸引人的PPT已经成为展示信息的重要手段,而其中数据对比的有效呈现尤为关键。为了让数据在幻灯片上不仅准 ...
2024-12-23在信息泛滥的现代社会,数据分析师已成为企业决策过程中不可或缺的角色。他们的任务是从海量数据中提取有价值的洞察,帮助组织制 ...
2024-12-23在数据驱动时代,数据分析已成为各行各业的必需技能。无论是提升个人能力还是推动职业发展,选择一条适合自己的学习路线至关重要 ...
2024-12-23在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17