互联网网站应用大多采用mysql作为DB存储,限于mysql单机性能的瓶颈,为了支撑更大容量和更大的访问量,dba一般通过建立 分布式集群,让多个mysql共同提供服务。所谓的mysql分布式集群,实质就是将原有的数据拆成多份,放在多个mysql数据库上存储,应用通过中间 层路由到对应的数据库分片,访问所需要数据,基本架构如图1所示。这里的关键点就是“拆”,如何拆库,根据业务场景,一般可以采取水平拆分和垂直拆分。所 谓水平拆分是指,将一个大表按一定的规则分片,分布在多个mysql数据库中;垂直拆分则是指根据业务模块划分,将不同模块分布在不同的mysql数据库 中。无论是水平拆分,还是垂直拆分,对于底层运维人员来说,迁移扩容的本质是一样的。本文会结合一个具体的例子,详细讲解mysql拆库的具体步骤。
前提:mysq集群部署采用MM架构,Master与Slave采用双向复制,Master对外提供服务,Slave作为热备。
假设:实例上有库A和库B,目前受限于单机mysql的性能瓶颈,需要扩容。
目的:将库B拆出来,使得库A和库B分别单独占用物理机,如图2所示
实施步骤:
1.搭建备库
Mysql搭建备库主要有两种方式,逻辑备份(mysqldump)或物理备份(extrabackup)。由于我们需要将其中一个库拆出来,选择mysqldump会比较合适。
mysqldump -uxxx -pxxx –h ip_addr -P port --databases B mysql --master-data=2 --single-transaction --default-character-set=xxx > /u01/bak/B_dump.sql 2>/u01/bak/B_dump.log & |
说明:
1) 参数
--master-data=2,--single-transaction这两个参数一起使用,全局读锁只会在dump开始的时 候加一小段时间,通过设置repeatable read隔离级别,保证读取事务开始时的数据,获取一致性数据,并且在备份文件开头处显示位点(File,Position)。
2) 为什么要备份mysql库
这里是因为数据库的元数据信息都存储在mysql中,比如表定义,用户 信息等,因此需要一起备份过去。
2. 检查备份是否成功
查看/u01/bak/B_dump.sql的结尾是否有dump complete 查看/u01/bak/B_dump.log文件是否异常输出 |
3.导入备份到新机器
Mysql –uroot</u01/bak/B_dump.sql>B_import.log 2>&1 & |
4.导入增量
1) 由于老库上面有A,B两个库,新库只有B库,通过复制获取增量时,必然会导致报错,因此在导入前需要对新库设置复制过滤参数,replicate-do-db
replicate-do-db=mysql replicate-do-db=B |
2) 新库与老库建立复制关系,这里需要用到步骤1获取的位点信息(File,Position)
CHANGE master TO master_host=xxx, master_port=xxx,master_user='slave',master_password='slave', master_log_file=File,master_log_pos=Position; |
5. 等待新库与老库同步,至此新库与老库复制结构如下图
6. 切换
1) 将New M设置为可写状态,并将Old M与New M构成双M架构
备注:红色代表本次操作的复制变动
2) 通知应用将B库流量切换到New Master,由于这里设置到中间件的细节,不同公司采用的中间件不一样,这里不作说明
3) B库流量全部切换到New Master 后,检查Old Master是否还有B库流量访问,确定没有,调整复制结构
备注: 检查是否还有流量,可以通过show processlist看看是否还有连接来验证。
7.切换完毕 ,断开New Master 和Old Master的复制
8.善后
清理Old Master的B库数据,释放磁盘空间。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20