人工智能、大数据的十大类算法及其擅长的任务
AI正在改变我们的职业、我们的工作方式和我们的企业文化。AI让我们得以专注于那些真正关键的技术,让人力资源得以充分发挥他们的长处。但在工作场景中应用AI确实会让事情变得复杂,因为有各种不同层级的算法可以用于实现AI,每一类的使用和影响都有差别。为了更好地平衡人力资本和AI资本,本文作者介绍了用于实现AI、大数据、和数据科学的十大类算法,以及它们分别擅长的任务。
算法正在取代我们的工作吗?是。。。是的。。。但算法是个好东西。
算法是一系列包含能够帮助人解决问题、完成目标任务的规则的步骤。用正确的方式把这些步骤和规则组织起来,能够自动化算法建立人工智能(AI)。AI能够帮助我们做大量的分析性工作,让我们把时间集中于更有价值的事情。
AI正在改变我们的职业、我们的工作方式和我们的企业文化。AI让我们得以专注于那些真正关键的技术,让人力资源得以充分发挥他们的长处。但在工作场景中应用AI确实会让事情变得复杂,因为有各种不同层级的算法可以用于实现AI,每一类的使用和影响都有差别。为了更好地平衡人力资本和AI资本,本文介绍了用于实现AI、大数据、和数据科学的十大类算法。
1. Crunchers
这些算法使用比较少的重复步骤和较为简单的规则处理(crunch)复杂问题。我们给这些算法提供数据,它们就能得出一个答案。如果我们不喜欢这个答案,可以给算法提供更多的数据,让算法调整答案。Cruncher类算法擅长客户分类、预估项目持续时间、分析调查数据等任务。
2. Guides
这些算法为我们怎样根据成功的历史操作得出最好的策略、步骤或工作流提供指南(guides)。指南类算法擅长协调大量需要理解并执行如风险管理、战略改变、复杂项目管理等事情的动态部件。
3. Advisors
这些算法基于历史规律为我们提供预测、排名、成功的可能性等,对我们提出最佳选择的建议(advise)。建议类(advisors)算法擅长提出决策、规划和风险缓解方面的建议。
4. Predictors
这些算法使用解释历史行为和历史事件的小型可重复性决定和判断来对未来的人类行为和事件作出预测。预测类(predictors)算法擅长商业规划、市场预测、品牌管理、健康诊断,以及预测消费者行为、品牌吸引力、欺诈行为、营销机会、气候事件以及疾病爆发等。
5. TacTIcians
这些算法在战术上(tacTIcally)预先考虑短期行为并作出相应的反应。它们通过应用短期战术规则(short-term tacTIcal rules)的组合以及从相关人员中学来的信息做到这一点。战术类(tacTIcians)算法擅长平衡供应链、系统性能、人力工作负荷和生产线。
6. Strategists
这些算法从策略上(strategically)预测行为并作相应的计划。策略类(strategists)算法根据过去的数据发掘洞察和创新机会。它们通过应用短期规则和长期规则的组合、从相关人员中学来的信息以及这些人在不同的环境中的反应来做到这一点。策略类(strategists)算法擅长预测市场需求、客户流失、工作效率以及员工流失。
7. Lifters
这些算法能够代替我们自动完成重复性的任务,让我们能够专注于更有价值的工作。lifters类算法擅长分析和识别规则、欺诈行为、风险、改进、转型、机会和创新等中重复的模式和差距。
8. Partners
这些算法具有我们的领域中的许多专业知识,能让我们更高效、更专注。合作伙伴类(partners)算法擅长为我们提出建议、提供训练,让我们密切了解市场变化,并调整每日、每季度以及每年的目标。Partners理解我们的行为模式,知道我们何时应该吃午饭,气温达到几度时需要开空调等等。
9. Okays
这些算法在多个领域具有专业知识,能够代替我们的团队完成全部分析工作。算法完成分析后,团队中的每个人分别根据自己的专业技能审核分析结果,然后通过(okay)结果。Okays类算法擅长从各个角度深入分析物体构建大型图像,可用于业务规划、战略改变、文化转型等。
10. Supervisors
这些算法对我们的工作具有关键作用。它们能够管理工作者及其业务,使企业保持生产效率和财力的强健。监督类(supervisors)算法能够协调人力一起其他算法,帮助我们实现长期的战略发展目标。
AI是我们在全球商业舞台上生存的关键。仅以人类资本参与竞争是不够的,我们不仅需要AI来代替我们自动化工作,让我们的创新力有更大的发挥,而且需要AI 来改变我们的行为、习惯以及工作风格,以使我们保持竞争力。为了保持我们的竞争优势,我们必须理解AI如何工作,同时AI也必须理解我们如何工作。而为了理解我们如何工作,AI必须理解情绪智能(Emotional Intelligence)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11