大数据产业积极落地 会是未来“数据主义”前奏吗
翻看科技发展史,当某些跨时代的技术转捩点来临之时,两种状况似乎同时出现:大众观念里的鸡同鸭讲,以及,从业者对于概念追逐的狂热。近几年一个好例子即是:大数据。
公众一端:哪怕到了2015年,当马云数次宣称阿里正从一家IT企业转型为DT企业,舆论普遍关切的依旧是最新出炉的商业鸡汤。 从农业社会,工业社会,到信息社会,中国两三步并作一步的路径,让数据概念几乎远离大众语境。
产业一端:大概三年多前,创业公司十之八九说自己能做大数据,与之相关的产业链也被粗暴切分为采集,处理,分析,可视化四个节点,一时间暗潮汹涌——泡沫也随之而来,从2014年进入2015年,行业开始小步洗牌,大数据从一个纯技术名词,或者说一个虚妄的概念,转变为应用范畴,以更为务实的姿态蔓延到一个又一个行当。时至今日,对大数据概念的热炒已有些无力,各种峰会与论坛所谈话题几乎都是如何让大数据“落地”的声音更为掷地有声。
大数据产业积极落地 会是未来“数据主义”前奏吗?
当然,让数据落地并非新鲜论调,真正令人着迷的是落地的“程度”——数据即权力,这是我真正想说的,大数据带来了权威的转移。
早在几年前关于大数据的哲学意涵呼之欲出的时候,数据是一种“宗教”就被不少学者大肆探讨。最近,我看到关于数据未来最具象的描述,来自《人类简史》作者尤瓦尔·赫拉利(我觉得他最有希望代替凯文·凯利在中国互联网界的地位),他为我们勾勒了一个“数据主义”的未来时代。
在他看来,那些极端的持数据主义世界观的“信徒”将整个世界视作一个数据流,任何事物的价值判断都由它对数据处理的贡献决定。“正如自由市场资本主义者相信市场无形的手,数据主义者相信数据流无形的手,当全球数据处理体系变得全知全能,接入这个系统就成为了一切意义的来源。”
从几年前从业者对大数据概念的热炒便知,大数据是个无远弗届的概念。赫拉利就曾写道:“数据主义允诺了人类在过去几个世纪里求而不得的科学‘圣杯’:一项将从音乐学,经济学一直到生物学的科学学科统一起来的无所不包的理论。根据数据主义,贝多芬第五交响曲,股票交易泡沫和流感病毒不过是三种数据流形式,能用相同基本概念和工具进行分析。”
嗯,数据主义的未来对数据从业者而言非常诱人——倘若数据是这个世界的主体,侍奉它的人无疑将收益颇丰。
将视角拉至现实。
搁置在上述宏大叙事框架中,如果你忘了未来由现实铺就,以下数字似乎顿时显得渺小。
我看到的数字,2016年上半年,共有18家大数据相关创业公司获得上千万融资;新三板与大数据相关企业有50家左右。在寒冬中,资本市场对大数据项目怀有巨大热情。其中一个原因是,越来越多投资者厌倦甚至惶恐于B2C疯狂烧钱的迷途,开始转向那些由技术驱动,商业模式清晰健康的领域,大数据就非常符合他们的胃口,何况在包括赫拉利在内的一众预言家眼中,它看起来就是未来本身。
现在看来,无论数据采集,传输,建模存储,统计分析挖掘还是可视化,都存在创业者的短兵相接。但从他们的服务对象一端分析,必须承认,诸多企业在试图驾驭数据的过程中,都面临着如何快速有效地处理海量数据,以及密集的多源异构数据的现实境遇,对数据关键节点有效整合的方案缺失,也让决策者丧失了对自身业务的最终判断。
而站在数据运营商的立场,将项目充分产品化,脱离难以复制且交付难度相对较大的项目制,无疑是将生命周期延绵下去的最佳商业模式——在大数据行业,这并非易事,困扰大数据产品化至少有三个痛点:1,数据量太大,这对软硬件系统都会带来巨大冲击;2,作为决策依据,数据处理的效率必须非常之高。3,多样性,行业和业务场景的不同,会对数据的呈现方式有不同要求。
所以买卖双方因素相加,做数据的生意,理想之举无疑是提供一整套完善的解决方案——用户的需求加快了大数据行业从软件到硬件到一站式应用的产品化进程。毕竟,面对行业的多元化需求,人们对过去单一的数据分析产品似乎愈加不满,在理解数据的方式上,他们希望最好能有从数据发现,存储,到可视分析,再到交互模式的一站式产品。举例来说,最近被投资人颇为看好的海云数据就发布了通用性综合解决方案“图易大数据决策产品生态平台”,提供一站式整体解决方案,协助企业,园区,城市,政府,重新通过数据认知自己的业务。举这个例子是因为,在面对任何项目和节点里,他们80%的工作都已经完全实现标准化和模块化,另20%则可根据不同行业属性和应用节点定制。
总之,说到底,这个时代,驾驭数据的能力是所有决策者“技能清单”里最重要的一章,因为任何行业,无论竞争,合作,还是管理,其本质都将趋向于“信息战”。而技术变迁史又同时告诉我们,无论哪个行业,谁能率先在行业中拾起新工具是多么重要。譬如对于数据的掌握,谁都知道数据可视分析能最大化做到价值变现,但当不少决策者还将思维停留在用饼状图和百分比了解业务,或者用守旧的IT系统装备自己时,他们已经落伍了,而那些对诸如图易这种“正在发生”的新工具敏感的决策者,无疑拥有了赢得信息战的利器。
因为,历史早已证明,当一项跨时代的技术转捩点来临之时,除了开篇所言的“大众观念里的鸡同鸭讲”以及“从业者对于概念追逐的狂热”,还有另一件更重要的事同时发生:新技术的诞生本身即是一个人群分野过程,它将人群划分为“会用它的”和“不会用它的”——率先拿起新工具的人总会走在竞争者前面。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21