工业大数据的三大挑战及大数据未来中国五大商业趋势
在设备运行的过程中,自然磨损本身会使产品的品质发生一定的变化。通过信息技术、物联网技术的发展,通过传感器技术,实时感知数据,知道产品出了什么故障,哪里需要配件,使得生产过程中的这些因素能够被精确控制,从而真正实现生产的智能化。一定程度上,工厂/车间的传感器所产生的大数据直接决定了“工业4.0”所要求的智能化设备的智能水平。
从生产能耗角度来看,设备生产过程中利用传感器集中监控所有的生产流程,能够发现能耗的异常或峰值情况,由此能够在生产过程中不断实时优化能源的消耗。同时,对所有流程的大数据进行分析,也将会整体上大幅降低生产能耗。
三大挑战
工业企业中生产线处于高速运转,由工业设备所产生、采集和处理的数据量远大于企业中计算机和人工产生的数据,从数据类型看也多是非结构化数据,生产线的高速运转则对数据的实时性要求也更高,工业大数据有三大挑战。
1构建工业大数据生态的关键
任何熟悉IT领域的行业人士都清楚,企业最直接的业务模式是项目,但特别希望可以把项目通用化,形成产品或平台,但实际情况是,除了微软等国际型IT企业有能力形成较为通用的产品或平台,大部分IT企业很难达到预想目标。
工业大数据生态要求企业有能力平台化,不管企业是生态的主导者还是参与者,工业大数据将来肯定是一种生态存在业态,只不过各家企业在其中的角色是不同的。
德国工业4.0体系中明确指出了三大集成,工业4.0研究院利用产业经济学和双边市场经济学的理论把三大集成进一步深化为其发展路径。一般情况下,企业需要先完成企业边界内的纵向集成,然后才有机会在单一价值链上延展,实现端到端集成,形成一定的产业链控制力的企业才会更进一步跨界(跨越多条价值链),达到横向集成的结果。
具有理想的工业大数据企业也许也要经历这样的过程,他们需要通过单个项目帮助企业完成内部的纵向集成,然后把解决方案产品化和平台化,进一步延展自己的核心竞争力。
2价值观驱动了工业大数据流派
库恩在《科学革命的结构》一书中指出,科学范式实际上是代表世界观和价值观的。工业大数据作为正在形成的一种科学革命范式,也在逐步形成各种流派,他们代表了各自派别的价值观。
工业4.0研究院初步研究认为,广泛意义上来认识工业大数据(例如工业互联网、智能服务等概念),美国通用电气牵头的工业互联网联盟可以用“工业互联网”来代表其价值观,由德国西门子等企业组成的工业4.0平台(PlattformIndustrie4.0)更愿意用“智能服务”和“智能数据”来阐释他们对未来工业大数据的认识,当然,中国简单直接用“工业大数据”来代表未来工业的一种新范式。
3全面认识“工业大数据”概念
工业大数据这个概念目前很受关注,特别是对于资本市场来讲,其想象空间比较大,但由于相关技术范式还不明确,因此大部分看法都是基于一些不完全的技术理解所做出的判断。
从字面上理解,工业大数据很容易被认为是大数据在工业领域的应用,也容易把工业领域的一些信息系统使用的传统数据库上升到工业大数据的数据不够大的场景,当然,还有一些商业企业更会把收集的一些毫无价值的实时数据存储起来称为工业大数据。
大数据未来中国五大商业趋势高风管理咨询有限公司发布的《2016年中国商业趋势调查报告》提出了未来中国商业社会发展的五大趋势:包括数字化变革、行业整合、走出去、用户体验互动和共享平台经济。1数字化变革
数字化趋势同时影响B2B和B2C行业,更重要的是思维的转变。在过去水涨船高的粗放型经济下,很多传统的中国制造业企业甚至很多扎根中国多年的外资工业企业,其领导人的思维模式都更多是B2B的工业化思维,离C端较远。他们更多关注的是如何为B(Business)即直接用户提供产品与服务,较少思考如何为其在C(Consumer)端即最终消费者创造更多新的附加值。
相反一些互联网企业,因其长期身处零距离到客户的前沿,在思维方式和商业模式的理解上更贴近工业4.0的本质。而中国企业也可以借助上一波B2C互联网大潮所释放的红利,基于对中国巨大消费市场的精准把握和分析,力争实现工业4.0的B2B产业升级。
2走出去
无论国企还是民企,无论大型企业还是中小企业,走出去都是中国企业发展历程中必然经历的阶段。走出去不仅可以帮助中国企业在地域角度开拓海外市场,也可帮助我们整合和利用全球资源更好的服务于国内市场,并将我们的竞争力进一步提升。
中国企业正在国际化进程中加速向全球明星迈进。在这个向全球明星迈进的过程中,中国企业不仅仅需要硬实力的提升和输出,比如规模、资金等,更在于软实力的提升并推广到全球层面,即一个企业的价值观、文化、思维方式。
3行业整合
对于互联网企业和传统企业,行业整合意味着新机会的拓展。在传统行业,无序的自由竞争造成了大量的资源浪费,特别是对以中小企业为主的中国轻型加工业,由于长期各自为政,效益低下,因此单纯强调产能升级虽然能够加强企业自身的生产力,但对产业整体的推动力度有限,进而单个企业也难以大幅提升自身价值。近年来,产业链上的整合不断加强,不仅降低了企业经营风险,而且提高了企业的竞争力,也推动了传统行业经营者的转型。对于互联网科技而言,将更多的在核心业务外,积极获得新的业务拓展和投资机会。
4用户接触
如今,来到互联网时代,激烈的竞争使得成本和价格不断降低,市场上的信息对大众也更加透明,所有这些都使得用户不再愿意轻易为普通产品支付溢价。相反,消费者尤其是年轻的90后、95后,更加追求极致化的产品和独一无二的用户体验。而这种用户体验经济也使得消费者更早的参与到产品的设计和销售过程中。
不仅仅是互联网企业,对于传统企业而言也应该努力提升用户接触能力,把服务体验融入整个价值链中。传统企业的核心是“制造”,而“制造”更多情况下仅是满足客户的要求而已,并没有真正理解客户或客户背后的客户,也并没有真正专注于提升新的客户价值。通过商业模式创新和产品科技创新,中国企业应该更加贴近消费者,并让消费者能够参与到产品的整个“创造”过程中,并让消费者来告知他们的需求。
5共享经济
共享经济商业模式代表的是一种从 “拥有”到“共享”的思维,这将继续在未来中国的商业领域向全行业渗透。在不同行业中,共享经济下已经出现很多商业模式的创新,不断冲击和颠覆传统企业。比如Uber、滴滴出行、易到用车等挑战传统的出租车行业,小猪短租、Airbnb等挑战房屋出租行业。同时我们也看到传统行业和互联网之间的共享经济合作也逐渐升级。在汽车行业我们已经看到汽车生产商与互联网公司之间类似的跨界合作伙伴关系在中国普遍存在:比如北汽集团和乐视网,北汽集团和滴滴快的,奇瑞、博泰公司(Pateo)和易到用车,宝马和百度以及百度和优步。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21