浅析Python中的赋值和深浅拷贝
Python中,对象的赋值,拷贝(深/浅拷贝)之间是有差异的,如果使用的时候不注意,就可能产生意外的结果。接下来通过本文给大家分享Python中的赋值和深浅拷贝.
python中,A object = B object 是一种赋值操作,赋的值不是一个对象在内存中的空间,而只是这个对象在内存中的位置 。
此时当B对象里面的内容发生更改的时候,A对象也自然而然的会跟着更改。
name = ["root","admin"]
cp_name = name # 对cp_name进行赋值操作
# 对name列表进行插入
name.append('root_temp')
print(name,cp_name) # ['root', 'admin', 'root_temp'] ['root', 'admin', 'root_temp']
print(id(name),id(cp_name)) # 23991960 23991960
而想要进行浅拷贝或者深拷贝,就需要引入copy模块 。
首先来说下浅拷贝,当进行浅拷贝时,使用copy.copy()方法。
import copy
name = ["root","admin"]
# 进行浅拷贝操作
cp_name = copy.copy(name)
# 查看cp_name,name
print(name,cp_name) # ['root', 'admin'] ['root', 'admin'] 拷贝成功
#查看地址
print(id(name),id(cp_name)) # 21146920 21147160 内存地址并不相同
# 尝试对name进行更改
name.append('root_temp')
# 查看cp_name是否更改
print(cp_name) # ['root', 'admin'] 内容并没有更改
A = copy.copy(B) 此时A对象相当于把B对象中的内容给完成的拷贝了一份,存储在了一份新的内存地址当中。
其中有一点需要注意,如下:
import copy
name = ['root','admin',['root_temp','admin_temp']]
cp_name = copy.copy(name)
# 查看两个对象的地址
print(id(name),id(cp_name)) # 24358504 24428952 二者的地址并不相同
# 对name 进行更改
name.append('test')
# 查看cp_name是否更改
print(cp_name) # ['root', 'admin', ['root_temp', 'admin_temp']] cp_name并未更改
# 在来对name中的列表对象进行更改
name[2].append('ttttt')
print(cp_name) # ['root', 'admin', ['root_temp', 'admin_temp', 'ttttt']] 发现cp_name内容发生了变化
在上面的代码中,通过copy.copy()方法把name对象浅拷贝给了cp_name,此时二者的内容相同,但是地址不同,说明通过浅拷贝后,cp_name相当于重新开辟了一块内存空间用来存储拷贝过来的内容。所以说,当name.append()第一次插入值的时候,cp_name对象没有变化,因为cp_name和name 处于两个不同的内存空间,是独立的。
而浅拷贝的问题在于,只能够拷贝第一层的内容,至于说第二层以及第三层或者第n层,对于浅拷贝来说都是无能为力的,只能简单的拷贝一份内存地址。
所以说,对于name 这个对象中,列表第一层发生更改,是不会影响cp_name的,而一旦更改了第二层或者第n层的内容,cp_name都会被影响,因为此时的cp_name对象里面子列表是与name的子列表共享相同的内存空间。
import copy
name = ['root','admin',['root_temp','admin_temp']]
cp_name = copy.deepcopy(name)
# 查看二者的id
print(id(name),id(cp_name)) # 29863528 29933976 地址不同,说明开辟了处于两块不同的空间
# 对name 第一层以及第二层进行更改
name.append('t1')
name[2].append('t2')
# 查看cp_name是否内容发生变化
print(cp_name) # ['root', 'admin', ['root_temp', 'admin_temp']] 内容并未发生更改
此时,cp_name对象并不会被name所影响,无论name对象的第一层列表还是第n层的更改和变化,都不会影响cp_name,因为此时通过深层拷贝,两个对象已经完全的处于两个不同的独立内存空间,而这也就是深层拷贝。
总结
以上所述是小编给大家介绍的Python中的赋值和深浅拷贝
数据分析咨询请扫描二维码
自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10在如今的数据驱动世界,数据分析师在各行各业中扮演着至关重要的角色。随着企业越来越依赖数据决策,数据分析职位的需求不断增加 ...
2024-11-10在信息爆炸的时代,做出正确的数据分析方法选择变得尤为重要。这不仅影响到数据分析的准确性,更关系到最终的决策效果。本文将详 ...
2024-11-10在当今竞争激烈的市场环境中,准确地把握市场动态和消费者需求是企业成功的关键。数据分析以其科学严谨的方法论,成为市场研究的 ...
2024-11-09在数据驱动的世界中,准确的数据分析是成功决策的基石。然而,数据分析的准确性并非一蹴而就,它需要多种方法和步骤的综合应用。 ...
2024-11-09推动银行的数字化转型是一个复杂且多维度的过程,涉及从战略、技术、组织到业务的多方面综合考量。这不仅仅是技术层面的变革,更 ...
2024-11-09国有企业作为国家经济的重要支柱,在提升经济效益和市场竞争力方面扮演着关键角色。然而,面对日益激烈的市场竞争和复杂的经济环 ...
2024-11-09业务分析师(Business Analyst,简称BA)是现代企业中不可或缺的角色。他们不仅是需求分析的专家,更是企业战略规划中的重要参与 ...
2024-11-09银行业正面临着一场全方位的数字化革命,旨在提升服务效率和客户体验,同时优化运营和增收。在这篇文章中,我们通过分析一些成功 ...
2024-11-09数据挖掘技术正在重新定义现代市场营销的方式。对于企业来说,能够深入了解消费者行为、需求和偏好是实现精准市场营销的关键, ...
2024-11-09在当今数据驱动的世界中,数据分析可视化已经成为一种必不可少的技能。它不仅帮助专业的数据分析师更好地传达信息,也使复杂的数 ...
2024-11-09在如今的数据驱动时代,掌握数据分析的工具和方法不仅是提高工作效率的关键,也是开拓职业机会的重要技能。数据分析涉及从数据的 ...
2024-11-08在现代商业环境中,企业正在逐步认识到数据挖掘技术在客户行为分析中的重要性。通过深度分析客户数据,这项技术不仅可以帮助企业 ...
2024-11-08数据挖掘分析是从大量数据中发现隐藏模式和有用信息的过程。尤其是在图数据挖掘中,提供了分析复杂关系和结构的独特视角。图数据 ...
2024-11-08在当今快速发展的商业环境中,提高运营效率已成为企业取得成功的关键因素。企业需要通过优化工作流程、利用技术创新和提升员工技 ...
2024-11-08Python 是一门非常适合初学者学习的编程语言。其简洁明了的语法、丰富的功能库,以及广泛的应用领域,使其成为学习编程的理想选 ...
2024-11-08在当今快速变化的商业环境中,金融数字化已经成为中小企业(SMEs)发展的关键驱动力。通过采用数字工具和技术,中小企业能够提高 ...
2024-11-08中小企业在全球经济中扮演着重要角色,然而,面对数字化浪潮,这些企业如何有效转型成为一大挑战。数字化转型不仅是技术的升级, ...
2024-11-08