SPSS统计 | 可重复测量数据处理步骤详解
重复测量定义:指对同一观察对象的同一观察指标在不同时间点上进行多次测量(重复次数≥3),称为重复测量设计或重复测量数据。
意义:1)分析处理因素对结果的影响;2)分析观察指标随时间变化的特点。
应用条件:样本是随机的,在同一水平上的观察是独立的。
一、以下为一实例
将手术要求基本相同的15名患者随机分3组,在手术过程中分别采用A,B,C三种麻醉诱导方法,在五个时相测量患者的收缩压,数据记录见表。
这个是属于两因素多水平的重复测量设计,研究对象在不同诱导时相不是随机分配的,而是有先后顺序的,这一点和随机区组设计的方差分析最大的不同点。
表12-17 不同麻醉诱导时相患者的收缩压(mmHg)
二、结合实例在SPSS讲解具体处理步骤
1.在SPSS中建立如下数据文件
第一列为被试编号(可不加此列),第二列为group,第三列开始,每一列代表一个时间点数据。
注:如果只有一组,那group那一列只有1111就行。一样可以统计。
2.分析步骤:打开SPSS...分析...选择一般线性模型...选择重复度量
3.随后将弹出下列对话框
4.由于实例重复测量的因子是诱导时间,共有t0-t4五个级别时间点,所以在级别数内填写5,即5个因子。点击添加......点击定义,弹出新窗口。
备注:被试因子名称是用于指定组内因素的名称,可以更改成诱导时间,,或者其他你想修改的名字;级别数就是组内因素的水平数,这里是5。
5.将新窗口中左侧的t0-t4分别添加至右边因子窗口中,将左边组别添加至右边下面的因子列表中,如下图:
1)点击上述窗口中的模型选项:与二因素的方差分析相似,这里我们默认选择全因子模型,只是这里把因素分为组间和组内两部分。
也可选择“设定”,将左边“因子”选入“群体内模型M”框,“group”选入“群体间模型D”框,“构建项”选择“主效应”。下方的平方和选“类型III”,这是对于平衡数据。如果两组样本量不等,则选择“类型IV”。
2)选项设置:点击“选项”:分别勾选以下几个复选框:描述统计、参数估计和方差齐性检验,单击继续。
5. 结果解读:
1)基本统计描述
下面三个表主要是基本信息输出表明组间和组内因子水平数,样本量和各个分组的基本统计描述。
2)球形检验结果
Manuchly球形度检验结果显示p=0.178>0.05,即满足协方差矩阵球形性检验,不需要对结果进行校正。
注:当球形检验p<0.05时,需要对结果进行检验。SPSS提供了Greenhouse-Geisser和Huynh-Feldt两种矫正方法(下面会介绍到)。
3)组内效应检验和比较
如下图:因子1框中,第一列为球形检验p>0.05时对应的F值=106.558,p<0.001,另外,自由度为第二框因子1*group中第一行对应df那一列数字8和第三个框同理为48,所以结果为F(8,48)=106.558,p<0.001。
以上结果为无矫正结果,因为符合球形检验,无需矫正。
其中,误差方差等同性检验时用来说明分组中的误差和方差五显著性,类似于处于同质水平。
注:如果本实例中球形检验p<0.05,即不符合球性检验时,则需要进行Greenhouse-Geisser或Huynh-Feldt任何一种矫正方法。本例以Greenhouse-Geisser矫正为例。
本次结果应为F(5.43,32.577)=106.558,p<0.001。
4)主体间效应的检验
以下表说明:不同诱导方法之间的收缩压差别有统计学意义。
5)参数估计
以下表格表示针对不同诱导时间和诱导方法下建立的类似于回归分析的参数估计结果。
6)多变量检验结果
最后看看多元分析的结果。多元方差分析避免了球形假设的问题,无论满不满足球形假设都可以用。当不满足球形假定时,一元分析可能一类错误率会增高。
下图是多元的结果:
表格中给出了对组内因素诱导时间和交互效应的检验,在这里分别采用四种不同的算法,有表中可以看出Sig指都小于0.05,说明组内因素诱导时间对患者的血压是有显著性意义的,组间与组内的交互作用对血压的影响也有显著性意义。
注:这四个指标结果相差不大。
6)Post hoc分析
在前面进行模型选择时,如果不选择全因子而选择选定时,可以进行组间两两比较分析,其中有LSD和Bonferroni两种方法供选择。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21