SPSS统计 | 可重复测量数据处理步骤详解
重复测量定义:指对同一观察对象的同一观察指标在不同时间点上进行多次测量(重复次数≥3),称为重复测量设计或重复测量数据。
意义:1)分析处理因素对结果的影响;2)分析观察指标随时间变化的特点。
应用条件:样本是随机的,在同一水平上的观察是独立的。
一、以下为一实例
将手术要求基本相同的15名患者随机分3组,在手术过程中分别采用A,B,C三种麻醉诱导方法,在五个时相测量患者的收缩压,数据记录见表。
这个是属于两因素多水平的重复测量设计,研究对象在不同诱导时相不是随机分配的,而是有先后顺序的,这一点和随机区组设计的方差分析最大的不同点。
表12-17 不同麻醉诱导时相患者的收缩压(mmHg)
二、结合实例在SPSS讲解具体处理步骤
1.在SPSS中建立如下数据文件
第一列为被试编号(可不加此列),第二列为group,第三列开始,每一列代表一个时间点数据。
注:如果只有一组,那group那一列只有1111就行。一样可以统计。
2.分析步骤:打开SPSS...分析...选择一般线性模型...选择重复度量
3.随后将弹出下列对话框
4.由于实例重复测量的因子是诱导时间,共有t0-t4五个级别时间点,所以在级别数内填写5,即5个因子。点击添加......点击定义,弹出新窗口。
备注:被试因子名称是用于指定组内因素的名称,可以更改成诱导时间,,或者其他你想修改的名字;级别数就是组内因素的水平数,这里是5。
5.将新窗口中左侧的t0-t4分别添加至右边因子窗口中,将左边组别添加至右边下面的因子列表中,如下图:
1)点击上述窗口中的模型选项:与二因素的方差分析相似,这里我们默认选择全因子模型,只是这里把因素分为组间和组内两部分。
也可选择“设定”,将左边“因子”选入“群体内模型M”框,“group”选入“群体间模型D”框,“构建项”选择“主效应”。下方的平方和选“类型III”,这是对于平衡数据。如果两组样本量不等,则选择“类型IV”。
2)选项设置:点击“选项”:分别勾选以下几个复选框:描述统计、参数估计和方差齐性检验,单击继续。
5. 结果解读:
1)基本统计描述
下面三个表主要是基本信息输出表明组间和组内因子水平数,样本量和各个分组的基本统计描述。
2)球形检验结果
Manuchly球形度检验结果显示p=0.178>0.05,即满足协方差矩阵球形性检验,不需要对结果进行校正。
注:当球形检验p<0.05时,需要对结果进行检验。SPSS提供了Greenhouse-Geisser和Huynh-Feldt两种矫正方法(下面会介绍到)。
3)组内效应检验和比较
如下图:因子1框中,第一列为球形检验p>0.05时对应的F值=106.558,p<0.001,另外,自由度为第二框因子1*group中第一行对应df那一列数字8和第三个框同理为48,所以结果为F(8,48)=106.558,p<0.001。
以上结果为无矫正结果,因为符合球形检验,无需矫正。
其中,误差方差等同性检验时用来说明分组中的误差和方差五显著性,类似于处于同质水平。
注:如果本实例中球形检验p<0.05,即不符合球性检验时,则需要进行Greenhouse-Geisser或Huynh-Feldt任何一种矫正方法。本例以Greenhouse-Geisser矫正为例。
本次结果应为F(5.43,32.577)=106.558,p<0.001。
4)主体间效应的检验
以下表说明:不同诱导方法之间的收缩压差别有统计学意义。
5)参数估计
以下表格表示针对不同诱导时间和诱导方法下建立的类似于回归分析的参数估计结果。
6)多变量检验结果
最后看看多元分析的结果。多元方差分析避免了球形假设的问题,无论满不满足球形假设都可以用。当不满足球形假定时,一元分析可能一类错误率会增高。
下图是多元的结果:
表格中给出了对组内因素诱导时间和交互效应的检验,在这里分别采用四种不同的算法,有表中可以看出Sig指都小于0.05,说明组内因素诱导时间对患者的血压是有显著性意义的,组间与组内的交互作用对血压的影响也有显著性意义。
注:这四个指标结果相差不大。
6)Post hoc分析
在前面进行模型选择时,如果不选择全因子而选择选定时,可以进行组间两两比较分析,其中有LSD和Bonferroni两种方法供选择。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13